These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32957186)

  • 1. Glycosaminoglycan depletion increases energy dissipation in articular cartilage under high-frequency loading.
    Han G; Boz U; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2020 Oct; 110():103876. PubMed ID: 32957186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-bandwidth AFM-based rheology reveals that cartilage is most sensitive to high loading rates at early stages of impairment.
    Nia HT; Bozchalooi IS; Li Y; Han L; Hung HH; Frank E; Youcef-Toumi K; Ortiz C; Grodzinsky A
    Biophys J; 2013 Apr; 104(7):1529-37. PubMed ID: 23561529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of solvent osmolarity and viscosity on cartilage energy dissipation under high-frequency loading.
    Hwang JW; Chawla D; Han G; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2022 Feb; 126():105014. PubMed ID: 34871958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-bandwidth AFM-based rheology is a sensitive indicator of early cartilage aggrecan degradation relevant to mouse models of osteoarthritis.
    Nia HT; Gauci SJ; Azadi M; Hung HH; Frank E; Fosang AJ; Ortiz C; Grodzinsky AJ
    J Biomech; 2015 Jan; 48(1):162-5. PubMed ID: 25435386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of viscous behavior and shear energy dissipation in articular cartilage under dynamic shear loading.
    Buckley MR; Bonassar LJ; Cohen I
    J Biomech Eng; 2013 Mar; 135(3):31002. PubMed ID: 24231813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanical and material properties of elderly human articular cartilage subject to impact and slow loading.
    Burgin LV; Edelsten L; Aspden RM
    Med Eng Phys; 2014 Feb; 36(2):226-32. PubMed ID: 24275561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue composition regulates distinct viscoelastic responses in auricular and articular cartilage.
    Nimeskern L; Utomo L; Lehtoviita I; Fessel G; Snedeker JG; van Osch GJ; Müller R; Stok KS
    J Biomech; 2016 Feb; 49(3):344-52. PubMed ID: 26772799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of glycosaminoglycan depletion on the friction and deformation of articular cartilage.
    Katta J; Stapleton T; Ingham E; Jin ZM; Fisher J
    Proc Inst Mech Eng H; 2008 Jan; 222(1):1-11. PubMed ID: 18335713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolving large-strain shear responses of progressively osteoarthritic human cartilage.
    Maier F; Lewis CG; Pierce DM
    Osteoarthritis Cartilage; 2019 May; 27(5):810-822. PubMed ID: 30660720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncoupled poroelastic and intrinsic viscoelastic dissipation in cartilage.
    Han G; Hess C; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2018 Aug; 84():28-34. PubMed ID: 29729578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical characterization and in vitro mechanical injury of elderly human femoral head cartilage: comparison to adult bovine humeral head cartilage.
    Démarteau O; Pillet L; Inaebnit A; Borens O; Quinn TM
    Osteoarthritis Cartilage; 2006 Jun; 14(6):589-96. PubMed ID: 16478669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of strain rate on transient local strain variations in articular cartilage.
    Komeili A; Abusara Z; Federico S; Herzog W
    J Mech Behav Biomed Mater; 2019 Jul; 95():60-66. PubMed ID: 30954915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex dependent mechanical properties of the human mandibular condyle.
    Kim DG; Haghighi A; Kwon HJ; Coogan JS; Nicolella DP; Johnson TB; Kim HD; Kim N; Agnew AM
    J Mech Behav Biomed Mater; 2017 Jul; 71():184-191. PubMed ID: 28342326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrometry as a noncontact alternative to dynamic and viscoelastic mechanical testing in cartilage.
    Espinosa MG; Otarola GA; Hu JC; Athanasiou KA
    J R Soc Interface; 2021 Dec; 18(185):20210765. PubMed ID: 34932927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The response of elderly human articular cartilage to mechanical stimuli in vitro.
    Plumb MS; Aspden RM
    Osteoarthritis Cartilage; 2005 Dec; 13(12):1084-91. PubMed ID: 16154770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage.
    Davisson T; Kunig S; Chen A; Sah R; Ratcliffe A
    J Orthop Res; 2002 Jul; 20(4):842-8. PubMed ID: 12168676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Traumatic loading of articular cartilage: Mechanical and biological responses and post-injury treatment.
    Natoli RM; Athanasiou KA
    Biorheology; 2009; 46(6):451-85. PubMed ID: 20164631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the variation of loading frequency on surface failure of bovine articular cartilage.
    Sadeghi H; Shepherd DET; Espino DM
    Osteoarthritis Cartilage; 2015 Dec; 23(12):2252-2258. PubMed ID: 26074363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.