These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32957200)

  • 1. Study of nanoscale deformation mechanisms in bulk hexagonal hydroxyapatite under uniaxial loading using molecular dynamics.
    Snyder AD; Salehinia I
    J Mech Behav Biomed Mater; 2020 Oct; 110():103894. PubMed ID: 32957200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Pore Defects on Uniaxial Mechanical Properties of Bulk Hexagonal Hydroxyapatite: A Molecular Dynamics Study.
    Snyder AD; Salehinia I
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite.
    Ching WY; Rulis P; Misra A
    Acta Biomater; 2009 Oct; 5(8):3067-75. PubMed ID: 19442769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of the mechanical properties of monoclinic hydroxyapatite.
    Ou X; Han Q
    J Mol Model; 2014 Nov; 20(11):2505. PubMed ID: 25352517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability in the nanoscale deformation of hydroxyapatite during compressive loading in bovine bone.
    Singhal A; Almer JD; Dunand DC
    Acta Biomater; 2012 Jul; 8(7):2747-58. PubMed ID: 22465576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the nanoscale interfacial arrangement in mechanical strength of tropocollagen-hydroxyapatite-based hard biomaterials.
    Dubey DK; Tomar V
    Acta Biomater; 2009 Sep; 5(7):2704-16. PubMed ID: 19345162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of changes in tropocollagen residue sequence and hydroxyapatite mineral texture on the strength of ideal nanoscale tropocollagen-hydroxyapatite biomaterials.
    Dubey DK; Tomar V
    J Mater Sci Mater Med; 2010 Jan; 21(1):161-71. PubMed ID: 19655234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructure and elastic modulus of single trabecula in bovine cancellous bone.
    Yamada S; Tadano S; Fukuda S
    J Biomech; 2014 Nov; 47(14):3482-7. PubMed ID: 25267574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of mineral on the load deformation behavior of polymer in hydroxyapatite-polyacrylic acid nanocomposite biomaterials: a steered molecular dynamics study.
    Bhowmik R; Katti KS; Katti DR
    J Nanosci Nanotechnol; 2008 Apr; 8(4):2075-84. PubMed ID: 18572617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fracture mechanics of hydroxyapatite single crystals under geometric confinement.
    Libonati F; Nair AK; Vergani L; Buehler MJ
    J Mech Behav Biomed Mater; 2013 Apr; 20():184-91. PubMed ID: 23500480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cyclic loading on the nanoscale deformation of hydroxyapatite and collagen fibrils in bovine bone.
    Singhal A; Stock SR; Almer JD; Dunand DC
    Biomech Model Mechanobiol; 2014 Jun; 13(3):615-26. PubMed ID: 23958833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between bone tissue strain and lattice strain of HAp crystals in bovine cortical bone under tensile loading.
    Fujisaki K; Tadano S
    J Biomech; 2007; 40(8):1832-8. PubMed ID: 17078958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientation and deformation of mineral crystals in tooth surfaces.
    Fujisaki K; Todoh M; Niida A; Shibuya R; Kitami S; Tadano S
    J Mech Behav Biomed Mater; 2012 Jun; 10():176-82. PubMed ID: 22520429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico study on probing atomistic insights into structural stability and tensile properties of Fe-doped hydroxyapatite single crystals.
    Basu S; Nag S; Kottan NB; Basu B
    Sci Rep; 2022 Nov; 12(1):20576. PubMed ID: 36446844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the deformation behaviors under uniaxial stress for bicontinuous nanoporous amorphous alloys.
    Zhang Y; Li J; Hu Y; Ding S; Du F; Xia R
    Phys Chem Chem Phys; 2022 Jan; 24(2):1099-1112. PubMed ID: 34927647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.
    Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D
    Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of tensile and compressive loading on the hierarchical strength of idealized tropocollagen-hydroxyapatite biomaterials as a function of the chemical environment.
    Dubey DK; Tomar V
    J Phys Condens Matter; 2009 May; 21(20):205103. PubMed ID: 21825522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds.
    Miranda P; Pajares A; Guiberteau F
    Acta Biomater; 2008 Nov; 4(6):1715-24. PubMed ID: 18583207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fracture mechanical behavior simulation of calcium-deficient hydroxyapatite crystals by molecular dynamics and first-principles calculation.
    Ji C; He B; Yun S; Bai X; Lin B
    J Mech Behav Biomed Mater; 2023 Jan; 137():105526. PubMed ID: 36343520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting.
    Miranda P; Pajares A; Saiz E; Tomsia AP; Guiberteau F
    J Biomed Mater Res A; 2007 Dec; 83(3):646-55. PubMed ID: 17508415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.