BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32957229)

  • 1. Macroscopic and microscopic analysis of the mechanical properties and adhesion force of cells using a single cell tensile test and atomic force microscopy: Remarkable differences in cell types.
    Nagayama K; Ohata S; Obata S; Sato A
    J Mech Behav Biomed Mater; 2020 Oct; 110():103935. PubMed ID: 32957229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane cholesterol and substrate stiffness co-ordinate to induce the remodelling of the cytoskeleton and the alteration in the biomechanics of vascular smooth muscle cells.
    Sanyour HJ; Li N; Rickel AP; Childs JD; Kinser CN; Hong Z
    Cardiovasc Res; 2019 Jul; 115(8):1369-1380. PubMed ID: 30395154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro tensile tester measurement of biomechanical properties and adhesion force of microtubule-polymerization-inhibited cancer cells.
    Uesugi K; Obata S; Nagayama K
    J Mech Behav Biomed Mater; 2024 Aug; 156():106586. PubMed ID: 38805872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell type-specific orientation and migration responses for a microgrooved surface with shallow grooves.
    Nagayama K; Hanzawa T
    Biomed Mater Eng; 2022; 33(5):393-406. PubMed ID: 35180105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.
    Tartibi M; Liu YX; Liu GY; Komvopoulos K
    Acta Biomater; 2015 Nov; 27():224-235. PubMed ID: 26300334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells.
    Deguchi S; Ohashi T; Sato M
    J Biomech; 2006; 39(14):2603-10. PubMed ID: 16216252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Vascular Smooth Muscle Cell Stiffness and Adhesion by [Ca2+]i: An Atomic Force Microscopy-Based Study.
    Zhu Y; He L; Qu J; Zhou Y
    Microsc Microanal; 2018 Dec; 24(6):708-712. PubMed ID: 30516127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism for direct actin force-sensing by α-catenin.
    Mei L; Espinosa de Los Reyes S; Reynolds MJ; Leicher R; Liu S; Alushin GM
    Elife; 2020 Sep; 9():. PubMed ID: 32969337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensile properties of vascular smooth muscle cells: bridging vascular and cellular biomechanics.
    Matsumoto T; Nagayama K
    J Biomech; 2012 Mar; 45(5):745-55. PubMed ID: 22177671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of single stress fiber stiffness in cultured aortic smooth muscle cells under relaxed and contracted states: Its relation to dynamic rearrangement of stress fibers.
    Nagayama K; Matsumoto T
    J Biomech; 2010 May; 43(8):1443-9. PubMed ID: 20189183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of blocking integrin β1 and N-cadherin cellular interactions on mechanical properties of vascular smooth muscle cells.
    Desai A; Geraghty S; Dean D
    J Biomech; 2019 Jan; 82():337-345. PubMed ID: 30503562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RhoA-induced cytoskeletal tension controls adaptive cellular remodeling to mechanical signaling.
    Lim SM; Trzeciakowski JP; Sreenivasappa H; Dangott LJ; Trache A
    Integr Biol (Camb); 2012 Jun; 4(6):615-27. PubMed ID: 22546924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoskeleton induced the changes of microvilli and mechanical properties in living cells by atomic force microscopy.
    Liu X; Wei Y; Li W; Li B; Liu L
    J Cell Physiol; 2021 May; 236(5):3725-3733. PubMed ID: 33169846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent changes in smooth muscle cell stiffness and focal adhesion area in response to cyclic equibiaxial stretch.
    Na S; Trache A; Trzeciakowski J; Sun Z; Meininger GA; Humphrey JD
    Ann Biomed Eng; 2008 Mar; 36(3):369-80. PubMed ID: 18214679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of actin filaments and microtubules to quasi-in situ tensile properties and internal force balance of cultured smooth muscle cells on a substrate.
    Nagayama K; Matsumoto T
    Am J Physiol Cell Physiol; 2008 Dec; 295(6):C1569-78. PubMed ID: 18923059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of actin filament distribution on tensile properties of smooth muscle cells obtained from rat thoracic aortas.
    Nagayama K; Nagano Y; Sato M; Matsumoto T
    J Biomech; 2006; 39(2):293-301. PubMed ID: 16321631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vasoactive agonists exert dynamic and coordinated effects on vascular smooth muscle cell elasticity, cytoskeletal remodelling and adhesion.
    Hong Z; Sun Z; Li M; Li Z; Bunyak F; Ersoy I; Trzeciakowski JP; Staiculescu MC; Jin M; Martinez-Lemus L; Hill MA; Palaniappan K; Meininger GA
    J Physiol; 2014 Mar; 592(6):1249-66. PubMed ID: 24445320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Point Loading Induces Cortex Stiffening and Actin Reorganization.
    Hu J; Chen S; Hu W; Lü S; Long M
    Biophys J; 2019 Oct; 117(8):1405-1418. PubMed ID: 31585706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico CDM model sheds light on force transmission in cell from focal adhesions to nucleus.
    Milan JL; Manifacier I; Beussman KM; Han SJ; Sniadecki NJ; About I; Chabrand P
    J Biomech; 2016 Sep; 49(13):2625-2634. PubMed ID: 27298154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actin-based biomechanical features of suspended normal and cancer cells.
    Haghparast SM; Kihara T; Shimizu Y; Yuba S; Miyake J
    J Biosci Bioeng; 2013 Sep; 116(3):380-5. PubMed ID: 23567154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.