These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 32957236)
41. Understanding the Interfacial Adhesion between Natural Silk and Polycaprolactone for Fabrication of Continuous Silk Biocomposites. Shi R; Ye D; Ma K; Tian W; Zhao Y; Guo H; Shao Z; Guan J; Ritchie RO ACS Appl Mater Interfaces; 2022 Oct; 14(41):46932-46944. PubMed ID: 36194850 [TBL] [Abstract][Full Text] [Related]
42. Characterization of Bombyx mori and Antheraea pernyi silk fibroins and their blends as potential biomaterials. Suzuki S; Chirila TV; Edwards GA Prog Biomater; 2016 Dec; 5(3-4):193-198. PubMed ID: 27995586 [TBL] [Abstract][Full Text] [Related]
43. Engineering Natural and Recombinant Silks for Sustainable Biodevices. Shen X; Shi H; Wei H; Wu B; Xia Q; Yeo J; Huang W Front Chem; 2022; 10():881028. PubMed ID: 35601555 [TBL] [Abstract][Full Text] [Related]
44. High-performance artificially reeled silkworm silk Hou T; Li X; Liu S; Zhou J; Bian Y; Zhou L; Sun M; Zhou W; Yang B Mater Horiz; 2023 Jul; 10(8):2854-2867. PubMed ID: 37337916 [TBL] [Abstract][Full Text] [Related]
45. Comparing the rheology of native spider and silkworm spinning dope. Holland C; Terry AE; Porter D; Vollrath F Nat Mater; 2006 Nov; 5(11):870-4. PubMed ID: 17057700 [TBL] [Abstract][Full Text] [Related]
46. Effects of different Bombyx mori silkworm varieties on the structural characteristics and properties of silk. Chung da E; Kim HH; Kim MK; Lee KH; Park YH; Um IC Int J Biol Macromol; 2015 Aug; 79():943-51. PubMed ID: 26072984 [TBL] [Abstract][Full Text] [Related]
47. Analysis of the pressure requirements for silk spinning reveals a pultrusion dominated process. Sparkes J; Holland C Nat Commun; 2017 Sep; 8(1):594. PubMed ID: 28928362 [TBL] [Abstract][Full Text] [Related]
48. Super-strong and Intrinsically Fluorescent Silkworm Silk from Carbon Nanodots Feeding. Fan S; Zheng X; Zhan Q; Zhang H; Shao H; Wang J; Cao C; Zhu M; Wang D; Zhang Y Nanomicro Lett; 2019 Sep; 11(1):75. PubMed ID: 34138020 [TBL] [Abstract][Full Text] [Related]
49. Mechanical behaviour and formation process of silkworm silk gut. Cenis JL; Madurga R; Aznar-Cervantes SD; Lozano-Pérez AA; Marí-Buyé N; Meseguer-Olmo L; Plaza GR; Guinea GV; Elices M; Del Pozo F; Pérez-Rigueiro J Soft Matter; 2015 Dec; 11(46):8981-91. PubMed ID: 26403149 [TBL] [Abstract][Full Text] [Related]
50. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films. Luan XY; Wang Y; Duan X; Duan QY; Li MZ; Lu SZ; Zhang HX; Zhang XG Biomed Mater; 2006 Dec; 1(4):181-7. PubMed ID: 18458403 [TBL] [Abstract][Full Text] [Related]
51. Mechanical behavior comparison of spider and silkworm silks using molecular dynamics at atomic scale. Lee M; Kwon J; Na S Phys Chem Chem Phys; 2016 Feb; 18(6):4814-21. PubMed ID: 26806791 [TBL] [Abstract][Full Text] [Related]
52. Morphology and tensile properties of silk fibers produced by uncommon Saturniidae. Reddy N; Yang Y Int J Biol Macromol; 2010 May; 46(4):419-24. PubMed ID: 20211646 [TBL] [Abstract][Full Text] [Related]
53. Structures of Bombyx mori and Samia cynthia ricini silk fibroins studied with solid-state NMR. Yao J; Nakazawa Y; Asakura T Biomacromolecules; 2004; 5(3):680-8. PubMed ID: 15132647 [TBL] [Abstract][Full Text] [Related]
55. Insight into the structure of single Antheraea pernyi silkworm fibers using synchrotron FTIR microspectroscopy. Ling S; Qi Z; Knight DP; Huang Y; Huang L; Zhou H; Shao Z; Chen X Biomacromolecules; 2013 Jun; 14(6):1885-92. PubMed ID: 23607809 [TBL] [Abstract][Full Text] [Related]
56. Comparing the rheology of mulberry and "wild" silkworm spinning dopes. Holland C; Porter D; Vollrath F Biopolymers; 2012 Jun; 97(6):362-7. PubMed ID: 22161905 [TBL] [Abstract][Full Text] [Related]
57. Intrinsic tensile properties of cocoon silk fibres can be estimated by removing flaws through repeated tensile tests. Rajkhowa R; Kaur J; Wang X; Batchelor W J R Soc Interface; 2015 Jun; 12(107):. PubMed ID: 25948613 [TBL] [Abstract][Full Text] [Related]
58. The Formation of All-Silk Composites and Time-Temperature Superposition. King JA; Zhang X; Ries ME Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241431 [TBL] [Abstract][Full Text] [Related]
59. Natural silk nanofibrils as reinforcements for the preparation of chitosan-based bionanocomposites. Li L; Yang H; Li X; Yan S; Xu A; You R; Zhang Q Carbohydr Polym; 2021 Feb; 253():117214. PubMed ID: 33278979 [TBL] [Abstract][Full Text] [Related]
60. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles. Lin N; Liu XY Chem Soc Rev; 2015 Nov; 44(21):7881-915. PubMed ID: 26214062 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]