These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 32957236)
61. Coatings and films made of silk proteins. Borkner CB; Elsner MB; Scheibel T ACS Appl Mater Interfaces; 2014 Sep; 6(18):15611-25. PubMed ID: 25004395 [TBL] [Abstract][Full Text] [Related]
62. From matrix nano- and micro-phase tougheners to composite macro-properties. Kinloch AJ; Taylor AC; Techapaitoon M; Teo WS; Sprenger S Philos Trans A Math Phys Eng Sci; 2016 Jul; 374(2071):20150275. PubMed ID: 27242298 [TBL] [Abstract][Full Text] [Related]
63. 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Vyas C; Zhang J; Øvrebø Ø; Huang B; Roberts I; Setty M; Allardyce B; Haugen H; Rajkhowa R; Bartolo P Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111433. PubMed ID: 33255027 [TBL] [Abstract][Full Text] [Related]
64. Methods for Silk Property Analyses across Structural Hierarchies and Scales. Blamires SJ; Rawal A; Edwards AD; Yarger JL; Oberst S; Allardyce BJ; Rajkhowa R Molecules; 2023 Feb; 28(5):. PubMed ID: 36903366 [TBL] [Abstract][Full Text] [Related]
65. Improved human tenocyte proliferation and differentiation in vitro by optimized silk degumming. Wang X; Qiu Y; Carr AJ; Triffitt JT; Sabokbar A; Xia Z Biomed Mater; 2011 Jun; 6(3):035010. PubMed ID: 21555843 [TBL] [Abstract][Full Text] [Related]
66. Synchrotron FTIR microspectroscopy of single natural silk fibers. Ling S; Qi Z; Knight DP; Shao Z; Chen X Biomacromolecules; 2011 Sep; 12(9):3344-9. PubMed ID: 21790142 [TBL] [Abstract][Full Text] [Related]
67. Advanced silk material spun by a transgenic silkworm promotes cell proliferation for biomedical application. Wang F; Xu H; Wang Y; Wang R; Yuan L; Ding H; Song C; Ma S; Peng Z; Peng Z; Zhao P; Xia Q Acta Biomater; 2014 Dec; 10(12):4947-4955. PubMed ID: 24980060 [TBL] [Abstract][Full Text] [Related]
68. Artificial and natural silk materials have high mechanical property variability regardless of sample size. Greco G; Mirbaha H; Schmuck B; Rising A; Pugno NM Sci Rep; 2022 Mar; 12(1):3507. PubMed ID: 35241705 [TBL] [Abstract][Full Text] [Related]
69. Molecular nature of dominant naked pupa mutation reveals novel insights into silk production in Bombyx mori. Hu W; Lu W; Wei L; Zhang Y; Xia Q Insect Biochem Mol Biol; 2019 Jun; 109():52-62. PubMed ID: 30954682 [TBL] [Abstract][Full Text] [Related]
70. Artificial ligament made from silk protein/Laponite hybrid fibers. Dong Q; Cai J; Wang H; Chen S; Liu Y; Yao J; Shao Z; Chen X Acta Biomater; 2020 Apr; 106():102-113. PubMed ID: 32014583 [TBL] [Abstract][Full Text] [Related]
71. Comparisons of the restoring and reinforcement effects of carboxymethyl chitosan-silk fibroin (Bombyx Mori/Antheraea Yamamai/Tussah) on aged historic silk. Hao X; Wang X; Yang W; Ran J; Ni F; Tong T; Dai W; Zheng L; Shen X; Tong H Int J Biol Macromol; 2019 Mar; 124():71-79. PubMed ID: 30471393 [TBL] [Abstract][Full Text] [Related]
72. Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres. Dou Y; Wang ZP; He W; Jia T; Liu Z; Sun P; Wen K; Gao E; Zhou X; Hu X; Li J; Fang S; Qian D; Liu Z Nat Commun; 2019 Nov; 10(1):5293. PubMed ID: 31757964 [TBL] [Abstract][Full Text] [Related]
73. Mechanical properties of silk of the Australian golden orb weavers Kerr GG; Nahrung HF; Wiegand A; Kristoffersen J; Killen P; Brown C; Macdonald J Biol Open; 2018 Feb; 7(2):. PubMed ID: 29437044 [TBL] [Abstract][Full Text] [Related]
74. The Evaluation of the Biological Effects of Melanin by Using Silkworm as a Model Animal. Andoh V; Chen L; Zhu F; Ge Q; Ma L; Wang Q; Chen K Toxins (Basel); 2022 Jun; 14(7):. PubMed ID: 35878159 [TBL] [Abstract][Full Text] [Related]
75. Structural and physical analysis of underwater silk from housing nest composites of a tropical chironomid midge. Thorat L; Joseph E; Nisal A; Shukla E; Ravikumar A; Nath BB Int J Biol Macromol; 2020 Nov; 163():934-942. PubMed ID: 32663562 [TBL] [Abstract][Full Text] [Related]
76. Animal Silk-Derived Amorphous Carbon Fibers for Electricity Generation and Solar Steam Evaporation. Qi P; Ren J; Ling S Front Chem; 2021; 9():669797. PubMed ID: 34239857 [TBL] [Abstract][Full Text] [Related]
77. Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds. Singh YP; Adhikary M; Bhardwaj N; Bhunia BK; Mandal BB Biomed Mater; 2017 Jul; 12(4):045012. PubMed ID: 28737162 [TBL] [Abstract][Full Text] [Related]
78. The potential of Antheraea pernyi silk for spinal cord repair. Varone A; Knight D; Lesage S; Vollrath F; Rajnicek AM; Huang W Sci Rep; 2017 Oct; 7(1):13790. PubMed ID: 29062079 [TBL] [Abstract][Full Text] [Related]
79. Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution. Tao W; Li M; Zhao C Int J Biol Macromol; 2007 Apr; 40(5):472-8. PubMed ID: 17173967 [TBL] [Abstract][Full Text] [Related]
80. High mechanical property silk produced by transgenic silkworms expressing the Dai X; Ye X; Shi L; Yu S; Wang X; Zhong B Front Bioeng Biotechnol; 2024; 12():1359587. PubMed ID: 38410165 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]