BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32957293)

  • 1. Efficient removal of U(VI) from aqueous solutions using the magnetic biochar derived from the biomass of a bloom-forming cyanobacterium (Microcystis aeruginosa).
    Wang B; Li Y; Zheng J; Hu Y; Wang X; Hu B
    Chemosphere; 2020 Sep; 254():126898. PubMed ID: 32957293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles.
    Fan FL; Qin Z; Bai J; Rong WD; Fan FY; Tian W; Wu XL; Wang Y; Zhao L
    J Environ Radioact; 2012 Apr; 106():40-6. PubMed ID: 22304999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication, characterization and U(VI) sorption properties of a novel biochar derived from Tribulus terrestris via two different approaches.
    Ahmed W; Mehmood S; Núñez-Delgado A; Qaswar M; Ali S; Ying H; Liu Z; Mahmood M; Chen DY
    Sci Total Environ; 2021 Aug; 780():146617. PubMed ID: 34030312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of uranium(VI) from water using hydroxyapatite coated activated carbon powder nanocomposite.
    Rout S; Muduli B; Kumar A; Pulhani V
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(5):596-605. PubMed ID: 32003307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization.
    Kumar S; Loganathan VA; Gupta RB; Barnett MO
    J Environ Manage; 2011 Oct; 92(10):2504-12. PubMed ID: 21665352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robust prediction of U(VI) sorption on Fe
    Sun Y; Peng D; Li Y; Guo H; Zhang N; Wang H; Mei P; Ishag A; Alsulami H; Alhodaly MS
    Environ Res; 2020 Jun; 185():109467. PubMed ID: 32276168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling.
    Shan D; Deng S; Zhao T; Wang B; Wang Y; Huang J; Yu G; Winglee J; Wiesner MR
    J Hazard Mater; 2016 Mar; 305():156-163. PubMed ID: 26685062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designed Core-Shell Fe
    Feng J; Cai Y; Wang X; Wang X; Zhu M; Fang M; Liu Z; Tan X
    Bull Environ Contam Toxicol; 2021 Jan; 106(1):165-174. PubMed ID: 32468076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic-watermelon rinds biochar for uranium-contaminated water treatment using an electromagnetic semi-batch column with removal mechanistic investigations.
    Lingamdinne LP; Choi JS; Angaru GKR; Karri RR; Yang JK; Chang YY; Koduru JR
    Chemosphere; 2022 Jan; 286(Pt 2):131776. PubMed ID: 34371355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions.
    Amin MT; Alazba AA; Shafiq M
    Environ Monit Assess; 2019 Nov; 191(12):735. PubMed ID: 31707527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot solvothermal synthesis of magnetic biochar from waste biomass: Formation mechanism and efficient adsorption of Cr(VI) in an aqueous solution.
    Liang S; Shi S; Zhang H; Qiu J; Yu W; Li M; Gan Q; Yu W; Xiao K; Liu B; Hu J; Hou H; Yang J
    Sci Total Environ; 2019 Dec; 695():133886. PubMed ID: 31422325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uranium removal from aqueous solution using macauba endocarp-derived biochar: Effect of physical activation.
    Guilhen SN; Rovani S; Araujo LG; Tenório JAS; Mašek O
    Environ Pollut; 2021 Mar; 272():116022. PubMed ID: 33221084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of a novel Fe
    Philippou K; Anastopoulos I; Dosche C; Pashalidis I
    J Environ Manage; 2019 Dec; 252():109677. PubMed ID: 31629175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of layered titanate nanowires at low temperature and their application in efficient removal of U(VI).
    Yin L; Wang P; Wen T; Yu S; Wang X; Hayat T; Alsaedi A; Wang X
    Environ Pollut; 2017 Jul; 226():125-134. PubMed ID: 28419919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulating Fe
    Yi X; He J; Guo Y; Han Z; Yang M; Jin J; Gu J; Ou M; Xu X
    Ecotoxicol Environ Saf; 2018 Jan; 147():699-707. PubMed ID: 28938140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy and mechanisms of δ-MnO
    Liu Y; Yuan W; Lin W; Yu S; Zhou L; Zeng Q; Wang J; Tao L; Dai Q; Liu J
    Environ Pollut; 2023 Oct; 335():122262. PubMed ID: 37506804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site energy distribution analysis and influence of Fe
    Reguyal F; Sarmah AK
    Environ Pollut; 2018 Feb; 233():510-519. PubMed ID: 29102881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale zero-valent iron/magnetite carbon composites for highly efficient immobilization of U(VI).
    Lv Z; Yang S; Chen L; Alsaedi A; Hayat T; Chen C
    J Environ Sci (China); 2019 Feb; 76():377-387. PubMed ID: 30528030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient removal of uranium(VI) from aqueous systems by heat-treated carbon microspheres.
    Zhang X; Wang J; Li R; Liu Q; Li L; Yu J; Zhang M; Liu L
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):8202-9. PubMed ID: 23716076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing new Fe
    Zhang T; Chen J; Xiong H; Yuan Z; Zhu Y; Hu B
    Chemosphere; 2021 Nov; 283():131241. PubMed ID: 34470731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.