BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 32957646)

  • 21. A quantitative analysis of heterogeneities and hallmarks in acute myelogenous leukaemia.
    Hu CW; Qiu Y; Ligeralde A; Raybon AY; Yoo SY; Coombes KR; Qutub AA; Kornblau SM
    Nat Biomed Eng; 2019 Nov; 3(11):889-901. PubMed ID: 30988472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated analysis of proteome, phosphotyrosine-proteome, tyrosine-kinome, and tyrosine-phosphatome in acute myeloid leukemia.
    Tong J; Helmy M; Cavalli FM; Jin L; St-Germain J; Karisch R; Taylor P; Minden MD; Taylor MD; Neel BG; Bader GD; Moran MF
    Proteomics; 2017 Mar; 17(6):. PubMed ID: 28176486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational biomarker pipeline from discovery to clinical implementation: plasma proteomic biomarkers for cardiac transplantation.
    Cohen Freue GV; Meredith A; Smith D; Bergman A; Sasaki M; Lam KK; Hollander Z; Opushneva N; Takhar M; Lin D; Wilson-McManus J; Balshaw R; Keown PA; Borchers CH; McManus B; Ng RT; McMaster WR;
    PLoS Comput Biol; 2013 Apr; 9(4):e1002963. PubMed ID: 23592955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of mass spectrometry data in proteomics.
    Matthiesen R; Jensen ON
    Methods Mol Biol; 2008; 453():105-22. PubMed ID: 18712299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Comparison of proteomics between acute myeloid leukemia and acute lymphoid leukemia].
    Xiao P; Zeng YY; Nie YF; Lin W
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2011 Dec; 19(6):1353-6. PubMed ID: 22169282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acute Myeloid Leukemia: Diagnosis and Management Based on Current Molecular Genetics Approach.
    Suguna E; Farhana R; Kanimozhi E; Kumar PS; Kumaramanickavel G; Kumar CS
    Cardiovasc Hematol Disord Drug Targets; 2018; 18(3):199-207. PubMed ID: 29766829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Implementation of CE-MS-identified proteome-based biomarker panels in drug development and patient management.
    Stepczynska A; Schanstra JP; Mischak H
    Bioanalysis; 2016; 8(5):439-55. PubMed ID: 26891752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of novel serum biomarker for the detection of acute myeloid leukemia based on liquid chromatography-mass spectrometry.
    Wang D; Tan G; Wang H; Chen P; Hao J; Wang Y
    J Pharm Biomed Anal; 2019 Mar; 166():357-363. PubMed ID: 30690249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optomechanical devices for deep plasma cancer proteomics.
    Kosaka PM; Calleja M; Tamayo J
    Semin Cancer Biol; 2018 Oct; 52(Pt 1):26-38. PubMed ID: 28867489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-depth mining of the immunopeptidome of an acute myeloid leukemia cell line using complementary ligand enrichment and data acquisition strategies.
    Pandey K; Mifsud NA; Lim Kam Sian TCC; Ayala R; Ternette N; Ramarathinam SH; Purcell AW
    Mol Immunol; 2020 Jul; 123():7-17. PubMed ID: 32387766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Standardization approaches in absolute quantitative proteomics with mass spectrometry.
    Calderón-Celis F; Encinar JR; Sanz-Medel A
    Mass Spectrom Rev; 2018 Nov; 37(6):715-737. PubMed ID: 28758227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MicroRNA biomarker identification for pediatric acute myeloid leukemia based on a novel bioinformatics model.
    Yan W; Xu L; Sun Z; Lin Y; Zhang W; Chen J; Hu S; Shen B
    Oncotarget; 2015 Sep; 6(28):26424-36. PubMed ID: 26317787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mass spectrometry-based proteomics in cell biology.
    Walther TC; Mann M
    J Cell Biol; 2010 Aug; 190(4):491-500. PubMed ID: 20733050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emerging mass spectrometry-based proteomics methodologies for novel biomedical applications.
    Pino LK; Rose J; O'Broin A; Shah S; Schilling B
    Biochem Soc Trans; 2020 Oct; 48(5):1953-1966. PubMed ID: 33079175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative protein biomarker panels: a path to improved clinical practice through proteomics.
    Hartl J; Kurth F; Kappert K; Horst D; Mülleder M; Hartmann G; Ralser M
    EMBO Mol Med; 2023 Apr; 15(4):e16061. PubMed ID: 36939029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Platforms and Pipelines for Proteomics Data Analysis and Management.
    Codrea MC; Nahnsen S
    Adv Exp Med Biol; 2016; 919():203-215. PubMed ID: 27975218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analyzing Cerebrospinal Fluid Proteomes to Characterize Central Nervous System Disorders: A Highly Automated Mass Spectrometry-Based Pipeline for Biomarker Discovery.
    Núñez Galindo A; Macron C; Cominetti O; Dayon L
    Methods Mol Biol; 2019; 1959():89-112. PubMed ID: 30852817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteomics methods for subcellular proteome analysis.
    Drissi R; Dubois ML; Boisvert FM
    FEBS J; 2013 Nov; 280(22):5626-34. PubMed ID: 24034475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated Proteomics Workflows for High-Throughput Library Generation and Biomarker Detection Using Data-Independent Acquisition.
    Paramasivan S; Morrison JL; Lock MC; Darby JRT; Barrero RA; Mills PC; Sadowski P
    J Proteome Res; 2023 Jun; 22(6):2018-2029. PubMed ID: 37219895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combining bioinformatics and MS-based proteomics: clinical implications.
    Acosta-Martin AE; Lane L
    Expert Rev Proteomics; 2014 Jun; 11(3):269-84. PubMed ID: 24720436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.