These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 32957671)
1. ASAMS: An Adaptive Sequential Sampling and Automatic Model Selection for Artificial Intelligence Surrogate Modeling. Duchanoy CA; Calvo H; Moreno-Armendáriz MA Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32957671 [TBL] [Abstract][Full Text] [Related]
2. An adaptive Kriging surrogate method for efficient joint estimation of hydraulic and biochemical parameters in reactive transport modeling. Zhou J; Su X; Cui G J Contam Hydrol; 2018 Sep; 216():50-57. PubMed ID: 30170768 [TBL] [Abstract][Full Text] [Related]
3. Design optimization of stent and its dilatation balloon using kriging surrogate model. Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895 [TBL] [Abstract][Full Text] [Related]
4. Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill. Abunama T; Othman F; Ansari M; El-Shafie A Environ Sci Pollut Res Int; 2019 Feb; 26(4):3368-3381. PubMed ID: 30511225 [TBL] [Abstract][Full Text] [Related]
5. Development of surrogate models in reliability-based design optimization: A review. Li X; Yang Q; Wang Y; Han X; Cao Y; Fan L; Ma J Math Biosci Eng; 2021 Jul; 18(5):6386-6409. PubMed ID: 34517537 [TBL] [Abstract][Full Text] [Related]
6. HPOSS: A hierarchical portfolio optimization stacking strategy to reduce the generalization error of ensembles of models. Ozelim LCSM; Ribeiro DB; Schiavon JA; Domingues VR; Queiroz PIB PLoS One; 2023; 18(8):e0290331. PubMed ID: 37651433 [TBL] [Abstract][Full Text] [Related]
7. Application of ensemble surrogates and adaptive sequential sampling to optimal groundwater remediation design at DNAPLs-contaminated sites. Ouyang Q; Lu W; Miao T; Deng W; Jiang C; Luo J J Contam Hydrol; 2017 Dec; 207():31-38. PubMed ID: 29128132 [TBL] [Abstract][Full Text] [Related]
8. A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms. Sharma E; Deo RC; Prasad R; Parisi AV Sci Total Environ; 2020 Mar; 709():135934. PubMed ID: 31869708 [TBL] [Abstract][Full Text] [Related]
9. Multi-objective optimization of coronary stent using Kriging surrogate model. Li H; Gu J; Wang M; Zhao D; Li Z; Qiao A; Zhu B Biomed Eng Online; 2016 Dec; 15(Suppl 2):148. PubMed ID: 28155700 [TBL] [Abstract][Full Text] [Related]
10. Research on surrogate model of dam numerical simulation with multiple outputs based on adaptive sampling. Liang J; Li Z; Pan L; Khailah EY; Sun L; Lu W Sci Rep; 2023 Jul; 13(1):11955. PubMed ID: 37488144 [TBL] [Abstract][Full Text] [Related]
11. Parallel heuristic search strategy based on a Bayesian approach for simultaneous recognition of contaminant sources and aquifer parameters at DNAPL-contaminated sites. Lu W; Wang H; Li J Environ Sci Pollut Res Int; 2020 Oct; 27(29):37134-37148. PubMed ID: 32583106 [TBL] [Abstract][Full Text] [Related]
12. Groundwater contaminant source characterization with simulation model parameter estimation utilizing a heuristic search strategy based on the stochastic-simulation statistic method. Wang H; Lu W; Li J J Contam Hydrol; 2020 Oct; 234():103681. PubMed ID: 32739635 [TBL] [Abstract][Full Text] [Related]
13. A comparative research of different ensemble surrogate models based on set pair analysis for the DNAPL-contaminated aquifer remediation strategy optimization. Hou Z; Lu W; Xue H; Lin J J Contam Hydrol; 2017 Aug; 203():28-37. PubMed ID: 28641890 [TBL] [Abstract][Full Text] [Related]
14. Feature selection and nearest centroid classification for protein mass spectrometry. Levner I BMC Bioinformatics; 2005 Mar; 6():68. PubMed ID: 15788095 [TBL] [Abstract][Full Text] [Related]
15. Artificial Intelligence-Based Traditional Chinese Medicine Assistive Diagnostic System: Validation Study. Zhang H; Ni W; Li J; Zhang J JMIR Med Inform; 2020 Jun; 8(6):e17608. PubMed ID: 32538797 [TBL] [Abstract][Full Text] [Related]
16. Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach. Bennett CC; Hauser K Artif Intell Med; 2013 Jan; 57(1):9-19. PubMed ID: 23287490 [TBL] [Abstract][Full Text] [Related]
17. Adaptation and change detection with a sequential Monte Carlo scheme. Matsumoto T; Yosui K IEEE Trans Syst Man Cybern B Cybern; 2007 Jun; 37(3):592-606. PubMed ID: 17550114 [TBL] [Abstract][Full Text] [Related]
18. A machine learning-based comparative analysis of surrogate models for design optimisation in computational fluid dynamics. Mukhtar A; Yasir ASHM; Nasir MFM Heliyon; 2023 Aug; 9(8):e18674. PubMed ID: 37554836 [TBL] [Abstract][Full Text] [Related]
19. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants. Liang F; Jin IH Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562 [TBL] [Abstract][Full Text] [Related]
20. The Virtual Operative Assistant: An explainable artificial intelligence tool for simulation-based training in surgery and medicine. Mirchi N; Bissonnette V; Yilmaz R; Ledwos N; Winkler-Schwartz A; Del Maestro RF PLoS One; 2020; 15(2):e0229596. PubMed ID: 32106247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]