These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32957772)

  • 1. Resolved Infrared Spectroscopy of Aqueous Molecules Employing Tunable Graphene Plasmons in an Otto Prism.
    Nong J; Wei W; Lan G; Luo P; Guo C; Yi J; Tang L
    Anal Chem; 2020 Dec; 92(23):15370-15378. PubMed ID: 32957772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive Mid-Infrared Biosensing in Aqueous Solutions with Graphene Plasmons.
    Wu C; Guo X; Duan Y; Lyu W; Hu H; Hu D; Chen K; Sun Z; Gao T; Yang X; Dai Q
    Adv Mater; 2022 Jul; 34(27):e2110525. PubMed ID: 35460109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Molecular Infrared Spectroscopy Employing Bilayer Graphene Acoustic Plasmon Resonator.
    Wen C; Luo J; Xu W; Zhu Z; Qin S; Zhang J
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive Molecular Detection by Improving the Mode Energy of Graphene Plasmons for Surface Enhanced Infrared Absorption Spectroscopy.
    Zheng Q; Tang L; Yao W; Yin S; Du C
    J Nanosci Nanotechnol; 2019 Apr; 19(4):2253-2259. PubMed ID: 30486978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Surface-Enhanced Infrared Absorption Spectroscopy of Aqueous Molecules with Facile-Prepared Large-Area Reduced Graphene Oxide Island Film.
    Cao F; Wu L; Ruan Y; Bai J; Jiang X
    Anal Chem; 2018 Jun; 90(11):6526-6531. PubMed ID: 29712424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene Plasmon-Enhanced IR Biosensing for in Situ Detection of Aqueous-Phase Molecules with an Attenuated Total Reflection Mode.
    Zheng B; Yang X; Li J; Shi CF; Wang ZL; Xia XH
    Anal Chem; 2018 Sep; 90(18):10786-10794. PubMed ID: 30125489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction to "Resolved Infrared Spectroscopy of Aqueous Molecules Employing Tunable Graphene Plasmons in an Otto Prism".
    Nong J; Wei W; Lan G; Luo P; Guo C; Yi J; Tang L
    Anal Chem; 2021 Jan; 93(2):1209. PubMed ID: 33301303
    [No Abstract]   [Full Text] [Related]  

  • 8. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons.
    Hu H; Yang X; Zhai F; Hu D; Liu R; Liu K; Sun Z; Dai Q
    Nat Commun; 2016 Jul; 7():12334. PubMed ID: 27460765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-Based Biosensors for Detection of Composite Vibrational Fingerprints in the Mid-Infrared Region.
    Cai Y; Hang Y; Zhou Y; Zhu J; Yang J; Wang X
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31635170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mid-infrared sensing of molecular vibrational modes with tunable graphene plasmons.
    Wu T; Luo Y; Wei L
    Opt Lett; 2017 Jun; 42(11):2066-2069. PubMed ID: 28569846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metasurface with metallic nanoantennas and graphene nanoslits for sensing of protein monolayers and sub-monolayers.
    Ye M; Crozier KB
    Opt Express; 2020 Jun; 28(12):18479-18492. PubMed ID: 32680046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of optical absorption enhancement of plasmonic configuration by graphene on LiNbO
    Liu K; Lu F; Xu Y; Ma C
    Nanotechnology; 2021 Nov; 33(4):. PubMed ID: 34649234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy.
    Wei W; Chen N; Nong J; Lan G; Wang W; Yi J; Tang L
    Opt Express; 2018 Jun; 26(13):16903-16916. PubMed ID: 30119509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Absorption Enhancement and Equivalent Resonant Circuit Modeling of Tunable Graphene-Metal Hybrid Antenna.
    Ullah Z; Nawi I; Witjaksono G; Tansu N; Khattak MI; Junaid M; Siddiqui MA; Magsi SA
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32512718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual Otto excitation dynamics and enhanced coupling of light to TE plasmons in graphene.
    Mason DR; Menabde SG; Park N
    Opt Express; 2014 Jan; 22(1):847-58. PubMed ID: 24515044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of propagating graphene plasmons excitation for tunable infrared photonic devices.
    Tang L; Wei W; Wei X; Nong J; Du C; Shi H
    Opt Express; 2018 Feb; 26(3):3709-3722. PubMed ID: 29401898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning Anderson localization of edge-mode graphene plasmons in randomly gated nanoribbons.
    Zhu Y; Li CG; Zhu Y; Xiong B; Peng R; Wang M
    Opt Express; 2020 May; 28(11):16879-16892. PubMed ID: 32549501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MoirĂ© graphene nanoribbons: nearly perfect absorptions and highly efficient reflections with wide angles.
    Zhang HZ; Qin HY; Zhang WX; Huang L; Zhang XD
    Opt Express; 2022 Jan; 30(2):2219-2229. PubMed ID: 35209367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable resonant graphene plasmons for mid-infrared biosensing.
    Wu T; Wei L
    Opt Express; 2016 Nov; 24(23):26241-26248. PubMed ID: 27857360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators.
    Brar VW; Jang MS; Sherrott M; Lopez JJ; Atwater HA
    Nano Lett; 2013 Jun; 13(6):2541-7. PubMed ID: 23621616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.