BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 32957949)

  • 21. Three-Dimensional Texture Analysis with Machine Learning Provides Incremental Predictive Information for Successful Shock Wave Lithotripsy in Patients with Kidney Stones.
    Mannil M; von Spiczak J; Hermanns T; Poyet C; Alkadhi H; Fankhauser CD
    J Urol; 2018 Oct; 200(4):829-836. PubMed ID: 29673945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Texture analysis and machine learning algorithms accurately predict histologic grade in small (< 4 cm) clear cell renal cell carcinomas: a pilot study.
    Haji-Momenian S; Lin Z; Patel B; Law N; Michalak A; Nayak A; Earls J; Loew M
    Abdom Radiol (NY); 2020 Mar; 45(3):789-798. PubMed ID: 31822969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diagnostic accuracy of texture analysis and machine learning for quantification of liver fibrosis in MRI: correlation with MR elastography and histopathology.
    Schawkat K; Ciritsis A; von Ulmenstein S; Honcharova-Biletska H; Jüngst C; Weber A; Gubler C; Mertens J; Reiner CS
    Eur Radiol; 2020 Aug; 30(8):4675-4685. PubMed ID: 32270315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade.
    Shu J; Wen D; Xi Y; Xia Y; Cai Z; Xu W; Meng X; Liu B; Yin H
    Eur J Radiol; 2019 Dec; 121():108738. PubMed ID: 31756634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discriminatory CT-textural features in splenic infiltration of lymphoma versus splenomegaly in liver cirrhosis versus normal spleens in controls and evaluation of their role for longitudinal lymphoma monitoring.
    Reinert CP; Kloth C; Fritz J; Nikolaou K; Horger M
    Eur J Radiol; 2018 Jul; 104():129-135. PubMed ID: 29857858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Utility of CT Texture Analysis in Differentiating Low-Attenuation Renal Cell Carcinoma From Cysts: A Bi-Institutional Retrospective Study.
    Kim NY; Lubner MG; Nystrom JT; Swietlik JF; Abel EJ; Havighurst TC; Silverman SG; McGahan JP; Pickhardt PJ
    AJR Am J Roentgenol; 2019 Dec; 213(6):1259-1266. PubMed ID: 31386573
    [No Abstract]   [Full Text] [Related]  

  • 28. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer.
    Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P
    Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of Texture Analysis Parameter for Response Prediction in Patients with Hepatocellular Carcinoma Undergoing Drug-eluting Bead Transarterial Chemoembolization (DEB-TACE) Using Biphasic Contrast-enhanced CT Image Data: Correlation with Liver Perfusion CT.
    Kloth C; Thaiss WM; Kärgel R; Grimmer R; Fritz J; Ioanoviciu SD; Ketelsen D; Nikolaou K; Horger M
    Acad Radiol; 2017 Nov; 24(11):1352-1363. PubMed ID: 28652049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B.
    Chen Y; Luo Y; Huang W; Hu D; Zheng RQ; Cong SZ; Meng FK; Yang H; Lin HJ; Sun Y; Wang XY; Wu T; Ren J; Pei SF; Zheng Y; He Y; Hu Y; Yang N; Yan H
    Comput Biol Med; 2017 Oct; 89():18-23. PubMed ID: 28779596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Noninvasive assessment of significant liver fibrosis in rabbits by spectral CT parameters and texture analysis.
    Gong X; Guo Y; Zhu T; Xing D; Shi Q; Zhang M
    Jpn J Radiol; 2023 Sep; 41(9):983-993. PubMed ID: 37071251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hepatitis C related chronic liver cirrhosis: feasibility of texture analysis of MR images for classification of fibrosis stage and necroinflammatory activity grade.
    Wu Z; Matsui O; Kitao A; Kozaka K; Koda W; Kobayashi S; Ryu Y; Minami T; Sanada J; Gabata T
    PLoS One; 2015; 10(3):e0118297. PubMed ID: 25742285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis.
    Xue LY; Jiang ZY; Fu TT; Wang QM; Zhu YL; Dai M; Wang WP; Yu JH; Ding H
    Eur Radiol; 2020 May; 30(5):2973-2983. PubMed ID: 31965257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Texture analysis as a radiomic marker for differentiating renal tumors.
    Yu H; Scalera J; Khalid M; Touret AS; Bloch N; Li B; Qureshi MM; Soto JA; Anderson SW
    Abdom Radiol (NY); 2017 Oct; 42(10):2470-2478. PubMed ID: 28421244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas.
    Kocak B; Ates E; Durmaz ES; Ulusan MB; Kilickesmez O
    Eur Radiol; 2019 Sep; 29(9):4765-4775. PubMed ID: 30747300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep residual nets model for staging liver fibrosis on plain CT images.
    Li Q; Yu B; Tian X; Cui X; Zhang R; Guo Q
    Int J Comput Assist Radiol Surg; 2020 Aug; 15(8):1399-1406. PubMed ID: 32556922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prospective comparison of transient, point shear wave, and magnetic resonance elastography for staging liver fibrosis.
    Lefebvre T; Wartelle-Bladou C; Wong P; Sebastiani G; Giard JM; Castel H; Murphy-Lavallée J; Olivié D; Ilinca A; Sylvestre MP; Gilbert G; Gao ZH; Nguyen BN; Cloutier G; Tang A
    Eur Radiol; 2019 Dec; 29(12):6477-6488. PubMed ID: 31278577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Texture analysis on (18)F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions.
    Xu R; Kido S; Suga K; Hirano Y; Tachibana R; Muramatsu K; Chagawa K; Tanaka S
    Ann Nucl Med; 2014 Nov; 28(9):926-35. PubMed ID: 25107363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.
    Feng Z; Rong P; Cao P; Zhou Q; Zhu W; Yan Z; Liu Q; Wang W
    Eur Radiol; 2018 Apr; 28(4):1625-1633. PubMed ID: 29134348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative CT texture analysis for evaluating histologic grade of urothelial carcinoma.
    Zhang GM; Sun H; Shi B; Jin ZY; Xue HD
    Abdom Radiol (NY); 2017 Feb; 42(2):561-568. PubMed ID: 27604896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.