These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 32957974)
1. Whole-exome sequencing reveals potential mechanisms of drug resistance to FGFR3-TACC3 targeted therapy and subsequent drug selection: towards a personalized medicine. Tong Z; Yan C; Dong YA; Yao M; Zhang H; Liu L; Zheng Y; Zhao P; Wang Y; Fang W; Zhang F; Jiang W BMC Med Genomics; 2020 Sep; 13(1):138. PubMed ID: 32957974 [TBL] [Abstract][Full Text] [Related]
2. Dual targeting of FGFR3 and ERBB3 enhances the efficacy of FGFR inhibitors in FGFR3 fusion-driven bladder cancer. Weickhardt AJ; Lau DK; Hodgson-Garms M; Lavis A; Jenkins LJ; Vukelic N; Ioannidis P; Luk IY; Mariadason JM BMC Cancer; 2022 May; 22(1):478. PubMed ID: 35501832 [TBL] [Abstract][Full Text] [Related]
3. Assessment of Predictive Biomarkers of the Response to Pazopanib Based on an Integrative Analysis of High-grade Soft-tissue Sarcomas: Analysis of a Tumor Sample from a Responder and Patients with Other Soft-tissue Sarcomas. Suehara Y; Kohsaka S; Yamaguchi S; Hayashi T; Kurihara T; Sano K; Sasa K; Akaike K; Ueno T; Kojima S; Ikegami M; Mizuno S; Okubo T; Kim Y; Kaneko K; Saito T; Kato S; Mano H Clin Orthop Relat Res; 2020 Nov; 478(11):2461-2476. PubMed ID: 32567826 [TBL] [Abstract][Full Text] [Related]
4. The Irreversible FGFR Inhibitor KIN-3248 Overcomes FGFR2 Kinase Domain Mutations. Balasooriya ER; Wu Q; Ellis H; Zhen Y; Norden BL; Corcoran RB; Mohan A; Martin E; Franovic A; Tyhonas J; Lardy M; Grandinetti KB; Pelham R; Soroceanu L; Silveira VS; Bardeesy N Clin Cancer Res; 2024 May; 30(10):2181-2192. PubMed ID: 38437671 [TBL] [Abstract][Full Text] [Related]
5. FGFR3 translocations in bladder cancer: differential sensitivity to HSP90 inhibition based on drug metabolism. Acquaviva J; He S; Zhang C; Jimenez JP; Nagai M; Sang J; Sequeira M; Smith DL; Ogawa LS; Inoue T; Tatsuta N; Knowles MA; Bates RC; Proia DA Mol Cancer Res; 2014 Jul; 12(7):1042-54. PubMed ID: 24784839 [TBL] [Abstract][Full Text] [Related]
6. A Functional Genetic Screen Identifies the Phosphoinositide 3-kinase Pathway as a Determinant of Resistance to Fibroblast Growth Factor Receptor Inhibitors in FGFR Mutant Urothelial Cell Carcinoma. Wang L; Šuštić T; Leite de Oliveira R; Lieftink C; Halonen P; van de Ven M; Beijersbergen RL; van den Heuvel MM; Bernards R; van der Heijden MS Eur Urol; 2017 Jun; 71(6):858-862. PubMed ID: 28108151 [TBL] [Abstract][Full Text] [Related]
7. Genomic profiling is predictive of response to cisplatin treatment but not to PI3K inhibition in bladder cancer patient-derived xenografts. Wei L; Chintala S; Ciamporcero E; Ramakrishnan S; Elbanna M; Wang J; Hu Q; Glenn ST; Murakami M; Liu L; Gomez EC; Sun Y; Conroy J; Miles KM; Malathi K; Ramaiah S; Anbarasu A; Woloszynska-Read A; Johnson CS; Conroy J; Liu S; Morrison CD; Pili R Oncotarget; 2016 Nov; 7(47):76374-76389. PubMed ID: 27823983 [TBL] [Abstract][Full Text] [Related]
8. The Phosphatidylinositol 3-Kinase Pathway as a Potential Therapeutic Target in Bladder Cancer. Zeng SX; Zhu Y; Ma AH; Yu W; Zhang H; Lin TY; Shi W; Tepper CG; Henderson PT; Airhart S; Guo JM; Xu CL; deVere White RW; Pan CX Clin Cancer Res; 2017 Nov; 23(21):6580-6591. PubMed ID: 28808038 [No Abstract] [Full Text] [Related]
9. A Highly Potent TACC3 Inhibitor as a Novel Anticancer Drug Candidate. Akbulut O; Lengerli D; Saatci O; Duman E; Seker UOS; Isik A; Akyol A; Caliskan B; Banoglu E; Sahin O Mol Cancer Ther; 2020 Jun; 19(6):1243-1254. PubMed ID: 32217742 [TBL] [Abstract][Full Text] [Related]
10. 1-tert-butyl-3-[6-(3,5-dimethoxy-phenyl)-2-(4-diethylamino-butylamino)-pyrido[2,3-d]pyrimidin-7-yl]-urea (PD173074), a selective tyrosine kinase inhibitor of fibroblast growth factor receptor-3 (FGFR3), inhibits cell proliferation of bladder cancer carrying the FGFR3 gene mutation along with up-regulation of p27/Kip1 and G1/G0 arrest. Miyake M; Ishii M; Koyama N; Kawashima K; Kodama T; Anai S; Fujimoto K; Hirao Y; Sugano K J Pharmacol Exp Ther; 2010 Mar; 332(3):795-802. PubMed ID: 19955487 [TBL] [Abstract][Full Text] [Related]
11. Development of RNA-FISH Assay for Detection of Oncogenic FGFR3-TACC3 Fusion Genes in FFPE Samples. Kurobe M; Kojima T; Nishimura K; Kandori S; Kawahara T; Yoshino T; Ueno S; Iizumi Y; Mitsuzuka K; Arai Y; Tsuruta H; Habuchi T; Kobayashi T; Matsui Y; Ogawa O; Sugimoto M; Kakehi Y; Nagumo Y; Tsutsumi M; Oikawa T; Kikuchi K; Nishiyama H PLoS One; 2016; 11(12):e0165109. PubMed ID: 27930669 [TBL] [Abstract][Full Text] [Related]
12. Exploring the FGFR3-related oncogenic mechanism in bladder cancer using bioinformatics strategy. Cao W; Ma E; Zhou L; Yuan T; Zhang C World J Surg Oncol; 2017 Mar; 15(1):66. PubMed ID: 28320388 [TBL] [Abstract][Full Text] [Related]
13. Development of a degrader against oncogenic fusion protein FGFR3-TACC3. Shibata N; Cho N; Koyama H; Naito M Bioorg Med Chem Lett; 2022 Mar; 60():128584. PubMed ID: 35085722 [TBL] [Abstract][Full Text] [Related]
14. FGFR3-TACC3 fusion proteins act as naturally occurring drivers of tumor resistance by functionally substituting for EGFR/ERK signaling. Daly C; Castanaro C; Zhang W; Zhang Q; Wei Y; Ni M; Young TM; Zhang L; Burova E; Thurston G Oncogene; 2017 Jan; 36(4):471-481. PubMed ID: 27345413 [TBL] [Abstract][Full Text] [Related]
16. A Tetravalent Bispecific Antibody Selectively Inhibits Diverse FGFR3 Oncogenic Variants. Yang Y; Suhasini AN; Jiang Z; Liu N; Rosconi M; Zhang B; Li Y; Dudgeon D; Seong C; Kim S; Rafique A; Huang T; Bhosle S; Krueger P; Ullman E; Olson W; Lin JC; Shen Y; Daly C Cancer Res; 2024 Jul; 84(13):2169-2180. PubMed ID: 39082679 [TBL] [Abstract][Full Text] [Related]
17. HIF-1α-dependent miR-424 induction confers cisplatin resistance on bladder cancer cells through down-regulation of pro-apoptotic UNC5B and SIRT4. Yu M; Ozaki T; Sun D; Xing H; Wei B; An J; Yang J; Gao Y; Liu S; Kong C; Zhu Y J Exp Clin Cancer Res; 2020 Jun; 39(1):108. PubMed ID: 32522234 [TBL] [Abstract][Full Text] [Related]
18. Preclinical impact of high dose intermittent antiangiogenic tyrosine kinase inhibitor pazopanib in intrinsically resistant tumor models. Reguera-Nuñez E; Man S; Xu P; Kerbel RS Angiogenesis; 2018 Nov; 21(4):793-804. PubMed ID: 29786782 [TBL] [Abstract][Full Text] [Related]
19. Quantitative phosphoproteomic analysis of acquired cancer drug resistance to pazopanib and dasatinib. Vyse S; McCarthy F; Broncel M; Paul A; Wong JP; Bhamra A; Huang PH J Proteomics; 2018 Jan; 170():130-140. PubMed ID: 28842319 [TBL] [Abstract][Full Text] [Related]
20. Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response. Beltran H; Eng K; Mosquera JM; Sigaras A; Romanel A; Rennert H; Kossai M; Pauli C; Faltas B; Fontugne J; Park K; Banfelder J; Prandi D; Madhukar N; Zhang T; Padilla J; Greco N; McNary TJ; Herrscher E; Wilkes D; MacDonald TY; Xue H; Vacic V; Emde AK; Oschwald D; Tan AY; Chen Z; Collins C; Gleave ME; Wang Y; Chakravarty D; Schiffman M; Kim R; Campagne F; Robinson BD; Nanus DM; Tagawa ST; Xiang JZ; Smogorzewska A; Demichelis F; Rickman DS; Sboner A; Elemento O; Rubin MA JAMA Oncol; 2015 Jul; 1(4):466-74. PubMed ID: 26181256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]