BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

541 related articles for article (PubMed ID: 32958039)

  • 1. De-identifying free text of Japanese electronic health records.
    Kajiyama K; Horiguchi H; Okumura T; Morita M; Kano Y
    J Biomed Semantics; 2020 Sep; 11(1):11. PubMed ID: 32958039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical Named Entity Recognition From Chinese Electronic Health Records via Machine Learning Methods.
    Zhang Y; Wang X; Hou Z; Li J
    JMIR Med Inform; 2018 Dec; 6(4):e50. PubMed ID: 30559093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De-identification of Clinical Text via Bi-LSTM-CRF with Neural Language Models.
    Tang B; Jiang D; Chen Q; Wang X; Yan J; Shen Y
    AMIA Annu Symp Proc; 2019; 2019():857-863. PubMed ID: 32308882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic de-identification of French electronic health records: a cost-effective approach exploiting distant supervision and deep learning models.
    Azzouzi ME; Coatrieux G; Bellafqira R; Delamarre D; Riou C; Oubenali N; Cabon S; Cuggia M; Bouzillé G
    BMC Med Inform Decis Mak; 2024 Feb; 24(1):54. PubMed ID: 38365677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records.
    Cai X; Dong S; Hu J
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):65. PubMed ID: 30961622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical Relation Extraction Toward Drug Safety Surveillance Using Electronic Health Record Narratives: Classical Learning Versus Deep Learning.
    Munkhdalai T; Liu F; Yu H
    JMIR Public Health Surveill; 2018 Apr; 4(2):e29. PubMed ID: 29695376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing.
    Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR
    J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of patients' smoking status using an explainable AI approach: a Danish electronic health records case study.
    Ebrahimi A; Henriksen MBH; Brasen CL; Hilberg O; Hansen TF; Jensen LH; Peimankar A; Wiil UK
    BMC Med Res Methodol; 2024 May; 24(1):114. PubMed ID: 38760718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Approaches Outperform Conventional Strategies in De-Identification of German Medical Reports.
    Richter-Pechanski P; Amr A; Katus HA; Dieterich C
    Stud Health Technol Inform; 2019 Sep; 267():101-109. PubMed ID: 31483261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Korean clinical entity recognition from diagnosis text using BERT.
    Kim YM; Lee TH
    BMC Med Inform Decis Mak; 2020 Sep; 20(Suppl 7):242. PubMed ID: 32998724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De-identification of clinical notes via recurrent neural network and conditional random field.
    Liu Z; Tang B; Wang X; Chen Q
    J Biomed Inform; 2017 Nov; 75S():S34-S42. PubMed ID: 28579533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De-identification of clinical free text using natural language processing: A systematic review of current approaches.
    Kovačević A; Bašaragin B; Milošević N; Nenadić G
    Artif Intell Med; 2024 May; 151():102845. PubMed ID: 38555848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding.
    Wunnava S; Qin X; Kakar T; Sen C; Rundensteiner EA; Kong X
    Drug Saf; 2019 Jan; 42(1):113-122. PubMed ID: 30649736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entity recognition from clinical texts via recurrent neural network.
    Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H
    BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records.
    Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X
    BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of clinical named entity recognition methods for Serbian electronic health records.
    Kaplar A; Stošović M; Kaplar A; Brković V; Naumović R; Kovačević A
    Int J Med Inform; 2022 Aug; 164():104805. PubMed ID: 35653828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adversarial training based lattice LSTM for Chinese clinical named entity recognition.
    Zhao S; Cai Z; Chen H; Wang Y; Liu F; Liu A
    J Biomed Inform; 2019 Nov; 99():103290. PubMed ID: 31557528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.