These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 32958388)

  • 1. Seeking Crops with Balanced Parts for the Ideal Whole.
    Abbai R; Singh VK; Snowdon RJ; Kumar A; Schnurbusch T
    Trends Plant Sci; 2020 Dec; 25(12):1189-1193. PubMed ID: 32958388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing designer crops for climate resilience through an integrated genomics approach.
    Mohd Saad NS; Neik TX; Thomas WJW; Amas JC; Cantila AY; Craig RJ; Edwards D; Batley J
    Curr Opin Plant Biol; 2022 Jun; 67():102220. PubMed ID: 35489163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global agricultural intensification during climate change: a role for genomics.
    Abberton M; Batley J; Bentley A; Bryant J; Cai H; Cockram J; de Oliveira AC; Cseke LJ; Dempewolf H; De Pace C; Edwards D; Gepts P; Greenland A; Hall AE; Henry R; Hori K; Howe GT; Hughes S; Humphreys M; Lightfoot D; Marshall A; Mayes S; Nguyen HT; Ogbonnaya FC; Ortiz R; Paterson AH; Tuberosa R; Valliyodan B; Varshney RK; Yano M
    Plant Biotechnol J; 2016 Apr; 14(4):1095-8. PubMed ID: 26360509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of genomic changes with crop domestication and breeding.
    Shi J; Lai J
    Curr Opin Plant Biol; 2015 Apr; 24():47-53. PubMed ID: 25656221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies.
    Razzaq A; Wani SH; Saleem F; Yu M; Zhou M; Shabala S
    J Exp Bot; 2021 Sep; 72(18):6123-6139. PubMed ID: 34114599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [De novo domestication to create new crops].
    Yang XP; Yu A; Xu C
    Yi Chuan; 2019 Sep; 41(9):827-835. PubMed ID: 31549681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The integrated genomics of crop domestication and breeding.
    Huang X; Huang S; Han B; Li J
    Cell; 2022 Jul; 185(15):2828-2839. PubMed ID: 35643084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing crop diversity for food security in the face of climate uncertainty.
    Zsögön A; Peres LEP; Xiao Y; Yan J; Fernie AR
    Plant J; 2022 Jan; 109(2):402-414. PubMed ID: 34882870
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Jian LM; Xiao YJ; Yan JB
    Yi Chuan; 2023 Sep; 45(9):741-753. PubMed ID: 37731229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De Novo Domestication: An Alternative Route toward New Crops for the Future.
    Fernie AR; Yan J
    Mol Plant; 2019 May; 12(5):615-631. PubMed ID: 30999078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De-Domestication: An Extension of Crop Evolution.
    Wu D; Lao S; Fan L
    Trends Plant Sci; 2021 Jun; 26(6):560-574. PubMed ID: 33648850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breeding toward improved ecological plant-microbiome interactions.
    Nerva L; Sandrini M; Moffa L; Velasco R; Balestrini R; Chitarra W
    Trends Plant Sci; 2022 Nov; 27(11):1134-1143. PubMed ID: 35803843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomics of crop wild relatives: expanding the gene pool for crop improvement.
    Brozynska M; Furtado A; Henry RJ
    Plant Biotechnol J; 2016 Apr; 14(4):1070-85. PubMed ID: 26311018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring natural selection to guide breeding for agriculture.
    Henry RJ; Nevo E
    Plant Biotechnol J; 2014 Aug; 12(6):655-62. PubMed ID: 24975385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach.
    Joshi DC; Chaudhari GV; Sood S; Kant L; Pattanayak A; Zhang K; Fan Y; Janovská D; Meglič V; Zhou M
    Planta; 2019 Sep; 250(3):783-801. PubMed ID: 30623242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics-assisted breeding.
    Hafeez A; Ali B; Javed MA; Saleem A; Fatima M; Fathi A; Afridi MS; Aydin V; Oral MA; Soudy FA
    Planta; 2023 Oct; 258(5):97. PubMed ID: 37823963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Road to Breeding 4.0: Unraveling the Good, the Bad, and the Boring of Crop Quantitative Genomics.
    Wallace JG; Rodgers-Melnick E; Buckler ES
    Annu Rev Genet; 2018 Nov; 52():421-444. PubMed ID: 30285496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospects of Feral Crop De Novo Redomestication.
    Pisias MT; Bakala HS; McAlvay AC; Mabry ME; Birchler JA; Yang B; Pires JC
    Plant Cell Physiol; 2022 Nov; 63(11):1641-1653. PubMed ID: 35639623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo domestication: retrace the history of agriculture to design future crops.
    Zhang J; Yu H; Li J
    Curr Opin Biotechnol; 2023 Jun; 81():102946. PubMed ID: 37080109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo domestication of wild species to create crops with increased resilience and nutritional value.
    Gasparini K; Moreira JDR; Peres LEP; Zsögön A
    Curr Opin Plant Biol; 2021 Apr; 60():102006. PubMed ID: 33556879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.