BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32958731)

  • 1. Evaluation of 2,3-Butanediol Production from Red Seaweed
    Ra CH; Seo JH; Jeong GT; Kim SK
    J Microbiol Biotechnol; 2020 Dec; 30(12):1912-1918. PubMed ID: 32958731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detoxification of Hydrolysates of the Red Seaweed Gelidium amansii for Improved Bioethanol Production.
    Nguyen TH; Sunwoo IY; Jeong GT; Kim SK
    Appl Biochem Biotechnol; 2019 Aug; 188(4):977-990. PubMed ID: 30761446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii.
    Ra CH; Jeong GT; Shin MK; Kim SK
    Bioresour Technol; 2013 Jul; 140():421-5. PubMed ID: 23714097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control.
    Ra CH; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2017 Mar; 40(3):403-411. PubMed ID: 27878375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts.
    Cho H; Ra CH; Kim SK
    J Microbiol Biotechnol; 2014 Feb; 24(2):264-9. PubMed ID: 24196166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient approach for bioethanol production from red seaweed Gelidium amansii.
    Kim HM; Wi SG; Jung S; Song Y; Bae HJ
    Bioresour Technol; 2015 Jan; 175():128-34. PubMed ID: 25459813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved fermentation performance to produce bioethanol from Gelidium amansii using Pichia stipitis adapted to galactose.
    Sukwong P; Ra CH; Sunwoo IY; Tantratian S; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2018 Jul; 41(7):953-960. PubMed ID: 29572665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production.
    Ra CH; Nguyen TH; Jeong GT; Kim SK
    Bioresour Technol; 2016 Jun; 209():66-72. PubMed ID: 26950757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valorization of Gelidium amansii for dual production of D-galactonic acid and 5-hydroxymethyl-2-furancarboxylic acid by chemo-biological approach.
    Liu P; Xie J; Tan H; Zhou F; Zou L; Ouyang J
    Microb Cell Fact; 2020 May; 19(1):104. PubMed ID: 32410635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Ethanol Yield Coefficients Using
    Park Y; Sunwoo IY; Yang J; Jeong GT; Kim SK
    J Microbiol Biotechnol; 2020 Jan; 30(6):930-936. PubMed ID: 32238769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Ethanol Production via Hyper Thermal Acid Hydrolysis and Co-Fermentation Using Waste Seaweed from Gwangalli Beach, Busan, Korea.
    Sunwoo IY; Nguyen TH; Sukwong P; Jeong GT; Kim SK
    J Microbiol Biotechnol; 2018 Mar; 28(3):401-408. PubMed ID: 29212293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Bioethanol Fermentation by Sonication Using Three Yeasts Species and Kariba Weed (Salvinia molesta) as Biomass Collected from Lake Victoria, Uganda.
    Kityo MK; Sunwoo I; Kim SH; Park YR; Jeong GT; Kim SK
    Appl Biochem Biotechnol; 2020 Sep; 192(1):180-195. PubMed ID: 32338330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Galactose Adapted Yeasts for Bioethanol Fermentation from Kappaphycus alvarezii Hydrolyzates.
    Nguyen TH; Ra CH; Sunwoo IY; Jeong GT; Kim SK
    J Microbiol Biotechnol; 2016 Jul; 26(7):1259-66. PubMed ID: 27056472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of ethanol production and bioadsorption of heavy metals by various red seaweeds.
    Sunwoo IY; Ra CH; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2016 Jun; 39(6):915-23. PubMed ID: 26922420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae.
    Kim SJ; Seo SO; Park YC; Jin YS; Seo JH
    J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose.
    Choi EJ; Kim JW; Kim SJ; Seo SO; Lane S; Park YC; Jin YS; Seo JH
    Biotechnol J; 2016 Nov; 11(11):1424-1432. PubMed ID: 27528190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.
    Yamada R; Nishikawa R; Wakita K; Ogino H
    J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Third-generation D-lactic acid production using red macroalgae Gelidium amansii by co-fermentation of galactose, glucose and xylose.
    Qiu Z; Wang G; Shao W; Cao L; Tan H; Shao S; Jin C; Xia J; He J; Liu X; He A; Han X; Xu J
    Bioresour Technol; 2024 May; 399():130631. PubMed ID: 38554760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient utilization of Eucheuma denticulatum hydrolysates using an activated carbon adsorption process for ethanol production in a 5-L fermentor.
    Ra CH; Kim MJ; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2017 Mar; 40(3):373-381. PubMed ID: 27830360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim JW; Lee YG; Kim SJ; Jin YS; Seo JH
    J Biotechnol; 2019 Oct; 304():31-37. PubMed ID: 31421146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.