These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 32958753)
41. Stabilization and adiabatic control of antiferromagnetically coupled skyrmions without the topological Hall effect. Yagan R; Cheghabouri AM; Onbasli MC Nanoscale Adv; 2023 Aug; 5(17):4470-4479. PubMed ID: 37638152 [TBL] [Abstract][Full Text] [Related]
42. Strain-Driven Zero-Field Near-10 nm Skyrmions in Two-Dimensional van der Waals Heterostructures. Li D; Haldar S; Heinze S Nano Lett; 2022 Sep; 22(18):7706-7713. PubMed ID: 36121771 [TBL] [Abstract][Full Text] [Related]
43. Controlled Individual Skyrmion Nucleation at Artificial Defects Formed by Ion Irradiation. Fallon K; Hughes S; Zeissler K; Legrand W; Ajejas F; Maccariello D; McFadzean S; Smith W; McGrouther D; Collin S; Reyren N; Cros V; Marrows CH; McVitie S Small; 2020 Apr; 16(13):e1907450. PubMed ID: 32141234 [TBL] [Abstract][Full Text] [Related]
44. Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques. Büttner F; Lemesh I; Schneider M; Pfau B; Günther CM; Hessing P; Geilhufe J; Caretta L; Engel D; Krüger B; Viefhaus J; Eisebitt S; Beach GSD Nat Nanotechnol; 2017 Nov; 12(11):1040-1044. PubMed ID: 28967891 [TBL] [Abstract][Full Text] [Related]
45. Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure. Wang Y; Wang L; Xia J; Lai Z; Tian G; Zhang X; Hou Z; Gao X; Mi W; Feng C; Zeng M; Zhou G; Yu G; Wu G; Zhou Y; Wang W; Zhang XX; Liu J Nat Commun; 2020 Jul; 11(1):3577. PubMed ID: 32681004 [TBL] [Abstract][Full Text] [Related]
46. A micromagnetic theory of skyrmion lifetime in ultrathin ferromagnetic films. Bernand-Mantel A; Muratov CB; Slastikov VV Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2122237119. PubMed ID: 35858324 [TBL] [Abstract][Full Text] [Related]
47. Distinct magnetic field dependence of Néel skyrmion sizes in ultrathin nanodots. Tejo F; Riveros A; Escrig J; Guslienko KY; Chubykalo-Fesenko O Sci Rep; 2018 Apr; 8(1):6280. PubMed ID: 29674646 [TBL] [Abstract][Full Text] [Related]
48. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Boulle O; Vogel J; Yang H; Pizzini S; de Souza Chaves D; Locatelli A; Menteş TO; Sala A; Buda-Prejbeanu LD; Klein O; Belmeguenai M; Roussigné Y; Stashkevich A; Chérif SM; Aballe L; Foerster M; Chshiev M; Auffret S; Miron IM; Gaudin G Nat Nanotechnol; 2016 May; 11(5):449-54. PubMed ID: 26809057 [TBL] [Abstract][Full Text] [Related]
49. Ferroelectrically tunable magnetic skyrmions in two-dimensional multiferroics. He Z; Du W; Dou K; Dai Y; Huang B; Ma Y Mater Horiz; 2023 Aug; 10(9):3450-3457. PubMed ID: 37345913 [TBL] [Abstract][Full Text] [Related]
50. Tunable Magnetic Antiskyrmion Size and Helical Period from Nanometers to Micrometers in a D Ma T; Sharma AK; Saha R; Srivastava AK; Werner P; Vir P; Kumar V; Felser C; Parkin SSP Adv Mater; 2020 Jul; 32(28):e2002043. PubMed ID: 32484269 [TBL] [Abstract][Full Text] [Related]
51. Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet. Peng L; Takagi R; Koshibae W; Shibata K; Nakajima K; Arima TH; Nagaosa N; Seki S; Yu X; Tokura Y Nat Nanotechnol; 2020 Mar; 15(3):181-186. PubMed ID: 31959930 [TBL] [Abstract][Full Text] [Related]
52. Creation of Magnetic Skyrmion Bubble Lattices by Ultrafast Laser in Ultrathin Films. Je SG; Vallobra P; Srivastava T; Rojas-Sánchez JC; Pham TH; Hehn M; Malinowski G; Baraduc C; Auffret S; Gaudin G; Mangin S; Béa H; Boulle O Nano Lett; 2018 Nov; 18(11):7362-7371. PubMed ID: 30295499 [TBL] [Abstract][Full Text] [Related]
53. Topological excitations in a kagome magnet. Pereiro M; Yudin D; Chico J; Etz C; Eriksson O; Bergman A Nat Commun; 2014 Sep; 5():4815. PubMed ID: 25198354 [TBL] [Abstract][Full Text] [Related]
54. Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature. Li S; Du A; Wang Y; Wang X; Zhang X; Cheng H; Cai W; Lu S; Cao K; Pan B; Lei N; Kang W; Liu J; Fert A; Hou Z; Zhao W Sci Bull (Beijing); 2022 Apr; 67(7):691-699. PubMed ID: 36546133 [TBL] [Abstract][Full Text] [Related]
55. Doping Control of Magnetic Anisotropy for Stable Antiskyrmion Formation in Schreibersite (Fe,Ni) Karube K; Peng L; Masell J; Hemmida M; Krug von Nidda HA; Kézsmárki I; Yu X; Tokura Y; Taguchi Y Adv Mater; 2022 Mar; 34(11):e2108770. PubMed ID: 35032408 [TBL] [Abstract][Full Text] [Related]
56. Skyrmion-skyrmion interaction induced by itinerant electrons in a ferromagnetic strip. Iroulart E; Rosales HD J Phys Condens Matter; 2022 Dec; 35(4):. PubMed ID: 36541515 [TBL] [Abstract][Full Text] [Related]
57. Large anisotropic deformation of skyrmions in strained crystal. Shibata K; Iwasaki J; Kanazawa N; Aizawa S; Tanigaki T; Shirai M; Nakajima T; Kubota M; Kawasaki M; Park HS; Shindo D; Nagaosa N; Tokura Y Nat Nanotechnol; 2015 Jul; 10(7):589-92. PubMed ID: 26030654 [TBL] [Abstract][Full Text] [Related]
58. Voltage controlled core reversal of fixed magnetic skyrmions without a magnetic field. Bhattacharya D; Al-Rashid MM; Atulasimha J Sci Rep; 2016 Aug; 6():31272. PubMed ID: 27506159 [TBL] [Abstract][Full Text] [Related]
59. Significant Dzyaloshinskii-Moriya interaction at graphene-ferromagnet interfaces due to the Rashba effect. Yang H; Chen G; Cotta AAC; N'Diaye AT; Nikolaev SA; Soares EA; Macedo WAA; Liu K; Schmid AK; Fert A; Chshiev M Nat Mater; 2018 Jul; 17(7):605-609. PubMed ID: 29807987 [TBL] [Abstract][Full Text] [Related]
60. Voltage-controlled magnetic anisotropy gradient-driven skyrmion-based half-adder and full-adder. Sara S; Murapaka C; Haldar A Nanoscale; 2024 Jan; 16(4):1843-1852. PubMed ID: 38168698 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]