BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32958791)

  • 1. Electrophysiological assessment of temporal envelope processing in cochlear implant users.
    Gransier R; Carlyon RP; Wouters J
    Sci Rep; 2020 Sep; 10(1):15406. PubMed ID: 32958791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts.
    Gransier R; Deprez H; Hofmann M; Moonen M; van Wieringen A; Wouters J
    Hear Res; 2016 May; 335():149-160. PubMed ID: 26994660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically evoked auditory steady state responses in cochlear implant users.
    Hofmann M; Wouters J
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):267-82. PubMed ID: 20033246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent component analysis for cochlear implant artifacts attenuation from electrically evoked auditory steady-state response measurements.
    Deprez H; Gransier R; Hofmann M; van Wieringen A; Wouters J; Moonen M
    J Neural Eng; 2018 Feb; 15(1):016006. PubMed ID: 29211684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved electrically evoked auditory steady-state response thresholds in humans.
    Hofmann M; Wouters J
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):573-89. PubMed ID: 22569837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing temporal modulation sensitivity using electrically evoked auditory steady state responses.
    Luke R; Van Deun L; Hofmann M; van Wieringen A; Wouters J
    Hear Res; 2015 Jun; 324():37-45. PubMed ID: 25746913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Modulation Transmission Is a Marker for Speech Perception in Noise in Cochlear Implant Users.
    Gransier R; Luke R; van Wieringen A; Wouters J
    Ear Hear; 2020; 41(3):591-602. PubMed ID: 31567565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of an artifact reduction strategy for electrically evoked auditory steady-state responses: Simulations and measurements.
    Bahmer A; Pieper S; Baumann U
    J Neurosci Methods; 2018 Feb; 296():57-68. PubMed ID: 29291927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency following responses and rate change complexes in cochlear implant users.
    Gransier R; Guérit F; Carlyon RP; Wouters J
    Hear Res; 2021 May; 404():108200. PubMed ID: 33647574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of analysis window on 40-Hz auditory steady-state responses in cochlear implant users.
    David W; Verwaerde E; Gransier R; Wouters J
    Hear Res; 2023 Oct; 438():108882. PubMed ID: 37688847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Electrically Evoked Auditory Steady-State Responses in Cochlear-Implant Recipients With a System Identification Based Method.
    Schott J; Gransier R; Wouters J; Moonen M
    IEEE Trans Biomed Eng; 2024 Mar; 71(3):738-749. PubMed ID: 37725734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of changes in stimulus level on electrically evoked cortical auditory potentials.
    Kim JR; Brown CJ; Abbas PJ; Etler CP; O'Brien S
    Ear Hear; 2009 Jun; 30(3):320-9. PubMed ID: 19322089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artifact removal by template subtraction enables recordings of the frequency following response in cochlear-implant users.
    Gransier R; Carlyon RP; Richardson ML; Middlebrooks JC; Wouters J
    Sci Rep; 2024 Mar; 14(1):6158. PubMed ID: 38486005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electrically evoked auditory change complex: preliminary results from nucleus cochlear implant users.
    Brown CJ; Etler C; He S; O'Brien S; Erenberg S; Kim JR; Dhuldhoya AN; Abbas PJ
    Ear Hear; 2008 Oct; 29(5):704-17. PubMed ID: 18596644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Electrically Evoked Auditory Change Complex Evoked by Temporal Gaps Using Cochlear Implants or Auditory Brainstem Implants in Children With Cochlear Nerve Deficiency.
    He S; McFayden TC; Shahsavarani BS; Teagle HFB; Ewend M; Henderson L; Buchman CA
    Ear Hear; 2018; 39(3):482-494. PubMed ID: 28968281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Objective assessment of electrode discrimination with the auditory change complex in adult cochlear implant users.
    Mathew R; Undurraga J; Li G; Meerton L; Boyle P; Shaida A; Selvadurai D; Jiang D; Vickers D
    Hear Res; 2017 Oct; 354():86-101. PubMed ID: 28826636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Psychoacoustic and electrophysiological electric-acoustic interaction effects in cochlear implant users with ipsilateral residual hearing.
    Imsiecke M; Büchner A; Lenarz T; Nogueira W
    Hear Res; 2020 Feb; 386():107873. PubMed ID: 31884220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurophysiology of cochlear implant users II: comparison among speech perception, dynamic range, and physiological measures.
    Firszt JB; Chambers And RD; Kraus N
    Ear Hear; 2002 Dec; 23(6):516-31. PubMed ID: 12476089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-Related Changes in Temporal Resolution Revisited: Electrophysiological and Behavioral Findings From Cochlear Implant Users.
    Mussoi BSS; Brown CJ
    Ear Hear; 2019; 40(6):1328-1344. PubMed ID: 31033701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.
    Tejani VD; Abbas PJ; Brown CJ
    Ear Hear; 2017; 38(5):e268-e284. PubMed ID: 28207576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.