These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32958807)

  • 1. Age-related differences in gait adaptations during overground walking with and without visual perturbations using a virtual reality headset.
    Osaba MY; Martelli D; Prado A; Agrawal SK; Lalwani AK
    Sci Rep; 2020 Sep; 10(1):15376. PubMed ID: 32958807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait adaptations during overground walking and multidirectional oscillations of the visual field in a virtual reality headset.
    Martelli D; Xia B; Prado A; Agrawal SK
    Gait Posture; 2019 Jan; 67():251-256. PubMed ID: 30388606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can optical flow perturbations detect walking balance impairment in people with multiple sclerosis?
    Selgrade BP; Meyer D; Sosnoff JJ; Franz JR
    PLoS One; 2020; 15(3):e0230202. PubMed ID: 32155225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overground gait training using virtual reality aimed at gait symmetry.
    Shideler BL; Martelli D; Prado A; Agrawal SK
    Hum Mov Sci; 2021 Apr; 76():102770. PubMed ID: 33636570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.
    Eikema DJ; Chien JH; Stergiou N; Myers SA; Scott-Pandorf MM; Bloomberg JJ; Mukherjee M
    Exp Brain Res; 2016 Feb; 234(2):511-22. PubMed ID: 26525712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Walking variability during continuous pseudo-random oscillations of the support surface and visual field.
    McAndrew PM; Dingwell JB; Wilken JM
    J Biomech; 2010 May; 43(8):1470-5. PubMed ID: 20346453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of direction cue time and walking speed on spatial-temporal gait adaptations in healthy older and young adults upon approach of turns.
    Torre D; Parasher RK; Nair P; Pinto Zipp G
    Gait Posture; 2024 Sep; 113():427-435. PubMed ID: 39096862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic cost of walking with increased step variability.
    O'Connor SM; Xu HZ; Kuo AD
    Gait Posture; 2012 May; 36(1):102-7. PubMed ID: 22459093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slowing down to preserve balance in the presence of optical flow perturbations.
    Shelton AD; McTaggart EM; Allen JL; Mercer VS; Franz JR
    Gait Posture; 2022 Jul; 96():365-370. PubMed ID: 35839534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait variability in healthy old adults is more affected by a visual perturbation than by a cognitive or narrow step placement demand.
    Francis CA; Franz JR; O'Connor SM; Thelen DG
    Gait Posture; 2015 Sep; 42(3):380-5. PubMed ID: 26233581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do kinematic metrics of walking balance adapt to perturbed optical flow?
    Thompson JD; Franz JR
    Hum Mov Sci; 2017 Aug; 54():34-40. PubMed ID: 28371662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of unexpected mechanical perturbations during treadmill walking on spatiotemporal gait parameters, and the dynamic stability measures by which to quantify postural response.
    Madehkhaksar F; Klenk J; Sczuka K; Gordt K; Melzer I; Schwenk M
    PLoS One; 2018; 13(4):e0195902. PubMed ID: 29672558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions.
    Hollman JH; Watkins MK; Imhoff AC; Braun CE; Akervik KA; Ness DK
    Gait Posture; 2016 Jan; 43():204-9. PubMed ID: 26481257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How humans use visual optic flow to regulate stepping during walking.
    Salinas MM; Wilken JM; Dingwell JB
    Gait Posture; 2017 Sep; 57():15-20. PubMed ID: 28570860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimal effects of age and prolonged physical and mental exercise on healthy adults' gait.
    Santos PCRD; Hortobágyi T; Zijdewind I; Bucken Gobbi LT; Barbieri FA; Lamoth C
    Gait Posture; 2019 Oct; 74():205-211. PubMed ID: 31561118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concurrent Validity of the Zeno Walkway for Measuring Spatiotemporal Gait Parameters in Older Adults.
    Vallabhajosula S; Humphrey SK; Cook AJ; Freund JE
    J Geriatr Phys Ther; 2019; 42(3):E42-E50. PubMed ID: 29286982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring gait adaptations to perturbed and conventional treadmill training in Parkinson's disease: Time-course, sustainability, and transfer.
    Steib S; Klamroth S; Gaßner H; Pasluosta C; Eskofier B; Winkler J; Klucken J; Pfeifer K
    Hum Mov Sci; 2019 Apr; 64():123-132. PubMed ID: 30711905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maintaining stable transtibial amputee gait on level and simulated uneven conditions in a virtual environment.
    Sinitski EH; Lemaire ED; Baddour N; Besemann M; Dudek N; Hebert JS
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):40-48. PubMed ID: 31349766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of lateral stabilization on walking in young and old adults.
    Dean JC; Alexander NB; Kuo AD
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1919-26. PubMed ID: 18018687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.