These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32958878)

  • 21. Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts.
    Bart MC; de Kluijver A; Hoetjes S; Absalah S; Mueller B; Kenchington E; Rapp HT; de Goeij JM
    Sci Rep; 2020 Oct; 10(1):17515. PubMed ID: 33060808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures.
    Ma Q; Cheng H; Jang KI; Luan H; Hwang KC; Rogers JA; Huang Y; Zhang Y
    J Mech Phys Solids; 2016 May; 90():179-202. PubMed ID: 27087704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Locomotion of sponges and its physical mechanism.
    Bond C; Harris AK
    J Exp Zool; 1988 Jun; 246(3):271-84. PubMed ID: 3404107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges.
    Li Z; Wang Y; Li J; Liu F; He L; He Y; Wang S
    Mar Biotechnol (NY); 2016 Dec; 18(6):659-671. PubMed ID: 27819120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida).
    Dohrmann M; Kelley C; Kelly M; Pisera A; Hooper JNA; Reiswig HM
    Front Zool; 2017; 14():18. PubMed ID: 28331531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness.
    Berger JB; Wadley HN; McMeeking RM
    Nature; 2017 Mar; 543(7646):533-537. PubMed ID: 28219078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis.
    Müller WE; Wang X; Kropf K; Ushijima H; Geurtsen W; Eckert C; Tahir MN; Tremel W; Boreiko A; Schlossmacher U; Li J; Schröder HC
    J Struct Biol; 2008 Feb; 161(2):188-203. PubMed ID: 18054502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy Absorption and Mechanical Performance of Functionally Graded Soft-Hard Lattice Structures.
    Rahman H; Yarali E; Zolfagharian A; Serjouei A; Bodaghi M
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33799821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Load-adaptive scaffold architecturing: a bioinspired approach to the design of porous additively manufactured scaffolds with optimized mechanical properties.
    Rainer A; Giannitelli SM; Accoto D; De Porcellinis S; Guglielmelli E; Trombetta M
    Ann Biomed Eng; 2012 Apr; 40(4):966-75. PubMed ID: 22109804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analytic analysis of auxetic metamaterials through analogy with rigid link systems.
    Rayneau-Kirkhope D; Zhang C; Theran L; Dias MA
    Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170753. PubMed ID: 29507518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new species of deep-sea sponge-associated shrimp from the North-West Pacific (Decapoda, Stenopodidea, Spongicolidae).
    Xu P; Zhou Y; Wang C
    Zookeys; 2017; (685):1-14. PubMed ID: 29089835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of 3D Printed Programmable Horseshoe Lattice Structures Based on a Phase-Evolution Model.
    Wang D; Xu H; Wang J; Jiang C; Zhu X; Ge Q; Gu G
    ACS Appl Mater Interfaces; 2020 May; 12(19):22146-22156. PubMed ID: 32320209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organic crystal lattices in the axial filament of silica spicules of Demospongiae.
    Werner P; Blumtritt H; Natalio F
    J Struct Biol; 2017 Jun; 198(3):186-195. PubMed ID: 28323140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scalable 3D-printed lattices for pressure control in fluid applications.
    Woodward IR; Attia LM; Patel P; Fromen CA
    AIChE J; 2021 Dec; 67(12):. PubMed ID: 35431316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The biology of glass sponges.
    Leys SP; Mackie GO; Reiswig HM
    Adv Mar Biol; 2007; 52():1-145. PubMed ID: 17298890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compositional and Quantitative Insights Into Bacterial and Archaeal Communities of South Pacific Deep-Sea Sponges (Demospongiae and Hexactinellida).
    Steinert G; Busch K; Bayer K; Kodami S; Arbizu PM; Kelly M; Mills S; Erpenbeck D; Dohrmann M; Wörheide G; Hentschel U; Schupp PJ
    Front Microbiol; 2020; 11():716. PubMed ID: 32390977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finite-Element-Mesh Based Method for Modeling and Optimization of Lattice Structures for Additive Manufacturing.
    Chen W; Zheng X; Liu S
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30360562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A narrow silicone sponge to close a wider retinal tear: the open-book technique of scleral buckling.
    Chang YH; Pao SI; Chen YJ; Chen JT
    Ophthalmic Surg Lasers Imaging; 2011; 42(3):263-4. PubMed ID: 21366186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of loading rate on the mechanical behavior of a natural rigid composite.
    Walter SL; Flinn BD; Mayer G
    Acta Biomater; 2007 May; 3(3):377-82. PubMed ID: 17166783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.