These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 32958897)

  • 1. Extensive germline genome engineering in pigs.
    Yue Y; Xu W; Kan Y; Zhao HY; Zhou Y; Song X; Wu J; Xiong J; Goswami D; Yang M; Lamriben L; Xu M; Zhang Q; Luo Y; Guo J; Mao S; Jiao D; Nguyen TD; Li Z; Layer JV; Li M; Paragas V; Youd ME; Sun Z; Ding Y; Wang W; Dou H; Song L; Wang X; Le L; Fang X; George H; Anand R; Wang SY; Westlin WF; Güell M; Markmann J; Qin W; Gao Y; Wei HJ; Church GM; Yang L
    Nat Biomed Eng; 2021 Feb; 5(2):134-143. PubMed ID: 32958897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9.
    Niu D; Wei HJ; Lin L; George H; Wang T; Lee IH; Zhao HY; Wang Y; Kan Y; Shrock E; Lesha E; Wang G; Luo Y; Qing Y; Jiao D; Zhao H; Zhou X; Wang S; Wei H; Güell M; Church GM; Yang L
    Science; 2017 Sep; 357(6357):1303-1307. PubMed ID: 28798043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1, CMAH and B4GALNT2.
    Fischer K; Rieblinger B; Hein R; Sfriso R; Zuber J; Fischer A; Klinger B; Liang W; Flisikowski K; Kurome M; Zakhartchenko V; Kessler B; Wolf E; Rieben R; Schwinzer R; Kind A; Schnieke A
    Xenotransplantation; 2020 Jan; 27(1):e12560. PubMed ID: 31591751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic engineering of porcine endothelial cell lines for evaluation of human-to-pig xenoreactive immune responses.
    Li P; Walsh JR; Lopez K; Isidan A; Zhang W; Chen AM; Goggins WC; Higgins NG; Liu J; Brutkiewicz RR; Smith LJ; Hara H; Cooper DKC; Ekser B
    Sci Rep; 2021 Jun; 11(1):13131. PubMed ID: 34162938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection.
    Li P; Estrada JL; Burlak C; Montgomery J; Butler JR; Santos RM; Wang ZY; Paris LL; Blankenship RL; Downey SM; Tector M; Tector AJ
    Xenotransplantation; 2015; 22(1):20-31. PubMed ID: 25178170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning.
    Gao H; Zhao C; Xiang X; Li Y; Zhao Y; Li Z; Pan D; Dai Y; Hara H; Cooper DK; Cai Z; Mou L
    J Reprod Dev; 2017 Feb; 63(1):17-26. PubMed ID: 27725344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs.
    Butler JR; Martens GR; Li P; Wang ZY; Estrada JL; Ladowski JM; Tector M; Tector AJ
    J Surg Res; 2016 Feb; 200(2):698-706. PubMed ID: 26375504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing porcine genes significantly reduces human-anti-pig cytotoxicity profiles: an alternative to direct complement regulation.
    Butler JR; Martens GR; Estrada JL; Reyes LM; Ladowski JM; Galli C; Perota A; Cunningham CM; Tector M; Joseph Tector A
    Transgenic Res; 2016 Oct; 25(5):751-9. PubMed ID: 27100221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1,3-galactose reduce the humoral barrier to xenotransplantation.
    Lutz AJ; Li P; Estrada JL; Sidner RA; Chihara RK; Downey SM; Burlak C; Wang ZY; Reyes LM; Ivary B; Yin F; Blankenship RL; Paris LL; Tector AJ
    Xenotransplantation; 2013; 20(1):27-35. PubMed ID: 23384142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Justification of specific genetic modifications in pigs for clinical organ xenotransplantation.
    Cooper DKC; Hara H; Iwase H; Yamamoto T; Li Q; Ezzelarab M; Federzoni E; Dandro A; Ayares D
    Xenotransplantation; 2019 Jul; 26(4):e12516. PubMed ID: 30989742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the CRISPR/Cas9 Genetic Constructs in Efficient Disruption of Porcine Genes for Xenotransplantation Purposes Along with an Assessment of the Off-Target Mutation Formation.
    Ryczek N; Hryhorowicz M; Lipiński D; Zeyland J; Słomski R
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32604937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH.
    Zhang R; Wang Y; Chen L; Wang R; Li C; Li X; Fang B; Ren X; Ruan M; Liu J; Xiong Q; Zhang L; Jin Y; Zhang M; Liu X; Li L; Chen Q; Pan D; Li R; Cooper DKC; Yang H; Dai Y
    Acta Biomater; 2018 May; 72():196-205. PubMed ID: 29631050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythrocytes from GGTA1/CMAH knockout pigs: implications for xenotransfusion and testing in non-human primates.
    Wang ZY; Burlak C; Estrada JL; Li P; Tector MF; Tector AJ
    Xenotransplantation; 2014; 21(4):376-84. PubMed ID: 24986655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The desirable donor pig to eliminate all xenoreactive antigens.
    Ladowski J; Martens G; Estrada J; Tector M; Tector J
    Xenotransplantation; 2019 Jul; 26(4):e12504. PubMed ID: 30825348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Step Generation of Multiple Gene-Edited Pigs by Electroporation of the CRISPR/Cas9 System into Zygotes to Reduce Xenoantigen Biosynthesis.
    Tanihara F; Hirata M; Nguyen NT; Sawamoto O; Kikuchi T; Otoi T
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-pig IgE and IgA Antibodies in Naive Primates and Nonhuman Primates With Pig Xenografts.
    Li Q; Iwase H; Yamamoto T; Nguyen HQ; Ayares D; Wang Y; Cooper DKC; Hara H
    Transplantation; 2021 Feb; 105(2):318-327. PubMed ID: 32796494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening pigs for xenotransplantation: expression of porcine endogenous retroviruses in transgenic pig skin.
    Kimsa-Dudek M; Strzalka-Mrozik B; Kimsa MW; Blecharz I; Gola J; Skowronek B; Janiszewski A; Lipinski D; Zeyland J; Szalata M; Slomski R; Mazurek U
    Transgenic Res; 2015 Jun; 24(3):529-36. PubMed ID: 25812516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos.
    Whitworth KM; Lee K; Benne JA; Beaton BP; Spate LD; Murphy SL; Samuel MS; Mao J; O'Gorman C; Walters EM; Murphy CN; Driver J; Mileham A; McLaren D; Wells KD; Prather RS
    Biol Reprod; 2014 Sep; 91(3):78. PubMed ID: 25100712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress in multiple genetically modified minipigs for xenotransplantation in China.
    Pan D; Liu T; Lei T; Zhu H; Wang Y; Deng S
    Xenotransplantation; 2019 Jan; 26(1):e12492. PubMed ID: 30775816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR bacon: a sizzling technique to generate genetically engineered pigs.
    DeMayo FJ; Spencer TE
    Biol Reprod; 2014 Sep; 91(3):79. PubMed ID: 25100711
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.