BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32960055)

  • 1. Exploring Amino Sugar and Phosphoenolpyruvate Metabolism to Improve
    Pang Q; Han H; Xu Y; Liu X; Qi Q; Wang Q
    J Agric Food Chem; 2020 Oct; 68(42):11758-11764. PubMed ID: 32960055
    [No Abstract]   [Full Text] [Related]  

  • 2. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Engineering of
    Liu C; Lv X; Li J; Liu L; Du G; Liu Y
    J Agric Food Chem; 2022 Dec; 70(50):15859-15868. PubMed ID: 36475707
    [No Abstract]   [Full Text] [Related]  

  • 4. Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor.
    Yang P; Wang J; Pang Q; Zhang F; Wang J; Wang Q; Qi Q
    Metab Eng; 2017 Sep; 43(Pt A):21-28. PubMed ID: 28780284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-acetyl-D-neuraminic acid synthesis in Escherichia coli K1 occurs through condensation of N-acetyl-D-mannosamine and pyruvate.
    Rodríguez-Aparicio LB; Ferrero MA; Reglero A
    Biochem J; 1995 Jun; 308 ( Pt 2)(Pt 2):501-5. PubMed ID: 7772033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Production of
    Zhao M; Zhu Y; Wang H; Zhang J; Xu W; Mu W
    J Agric Food Chem; 2023 Jul; 71(28):10701-10709. PubMed ID: 37409796
    [No Abstract]   [Full Text] [Related]  

  • 7. Production of N-acetyl-D-neuraminic acid by recombinant whole cells expressing Anabaena sp. CH1 N-acetyl-D-glucosamine 2-epimerase and Escherichia coli N-acetyl-D-neuraminic acid lyase.
    Lee YC; Chien HC; Hsu WH
    J Biotechnol; 2007 May; 129(3):453-60. PubMed ID: 17349707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of an N-acetylneuraminic acid synthetic pathway in Escherichia coli.
    Kang J; Gu P; Wang Y; Li Y; Yang F; Wang Q; Qi Q
    Metab Eng; 2012 Nov; 14(6):623-9. PubMed ID: 23018051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway Engineering of Bacillus subtilis for Enhanced N-Acetylneuraminic Acid Production via Whole-Cell Biocatalysis.
    Zhao L; Tian R; Shen Q; Liu Y; Liu L; Li J; Du G
    Biotechnol J; 2019 Jul; 14(7):e1800682. PubMed ID: 30925011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Synthetic Multiplexed Pathways for High-Level
    Zhang X; Wang C; Lv X; Liu L; Li J; Du G; Wang M; Liu Y
    J Agric Food Chem; 2021 Dec; 69(49):14868-14877. PubMed ID: 34851104
    [No Abstract]   [Full Text] [Related]  

  • 11. Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli.
    Ishikawa M; Koizumi S
    Carbohydr Res; 2010 Dec; 345(18):2605-9. PubMed ID: 20971455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic engineering of Escherichia coli to improve L-phenylalanine production.
    Liu Y; Xu Y; Ding D; Wen J; Zhu B; Zhang D
    BMC Biotechnol; 2018 Jan; 18(1):5. PubMed ID: 29382315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo evolutionary engineering of riboswitch with high-threshold for N-acetylneuraminic acid production.
    Pang Q; Han H; Liu X; Wang Z; Liang Q; Hou J; Qi Q; Wang Q
    Metab Eng; 2020 May; 59():36-43. PubMed ID: 31954846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoenolpyruvate-supply module in Escherichia coli improves N-acetyl-D-neuraminic acid biocatalysis.
    Zhu D; Wu J; Zhan X; Zhu L; Zheng Z; Gao M
    Biotechnol Lett; 2017 Feb; 39(2):227-234. PubMed ID: 27738778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic synthesis of cytidine 5'-monophospho-N-acetylneuraminic acid.
    Hamamoto T; Takeda S; Noguchi T
    Biosci Biotechnol Biochem; 2005 Oct; 69(10):1944-50. PubMed ID: 16244446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of N-Acetyl-d-neuraminic Acid by Whole Cells Expressing Bacteroides thetaiotaomicron N-Acetyl-d-glucosamine 2-Epimerase and Escherichia coli N-Acetyl-d-neuraminic Acid Aldolase.
    Gao X; Zhang F; Wu M; Wu Z; Shang G
    J Agric Food Chem; 2019 Jun; 67(22):6285-6291. PubMed ID: 31117501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoenolpyruvate Transporter Enables Targeted Perturbation During Metabolic Analysis of L-Phenylalanine Production With Escherichia coli.
    Tröndle J; Albermann C; Weiner M; Sprenger GA; Weuster-Botz D
    Biotechnol J; 2018 May; 13(5):e1700611. PubMed ID: 29220111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rerouting carbon flux for optimized biosynthesis of mesaconate in Escherichia coli.
    Wang J; Wang J; Tai YS; Zhang Q; Bai W; Zhang K
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7377-7388. PubMed ID: 29926142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flux redistribution of central carbon metabolism for efficient production of l-tryptophan in Escherichia coli.
    Xiong B; Zhu Y; Tian D; Jiang S; Fan X; Ma Q; Wu H; Xie X
    Biotechnol Bioeng; 2021 Mar; 118(3):1393-1404. PubMed ID: 33399214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.