BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32960189)

  • 1. Recent advances of BINOL-based sensors for enantioselective fluorescence recognition.
    Yu F; Chen Y; Jiang H; Wang X
    Analyst; 2020 Oct; 145(21):6769-6812. PubMed ID: 32960189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing.
    Pu L
    Acc Chem Res; 2017 Apr; 50(4):1032-1040. PubMed ID: 28287702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A convenient fluorescent method to simultaneously determine the enantiomeric composition and concentration of functional chiral amines.
    Huang Z; Yu S; Zhao X; Wen K; Xu Y; Yu X; Xu Y; Pu L
    Chemistry; 2014 Dec; 20(50):16458-61. PubMed ID: 25348091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optically active BINOL core-based phenyleneethynylene dendrimers for the enantioselective fluorescent recognition of amino alcohols.
    Pugh VJ; Hu QS; Zuo X; Lewis FD; Pu L
    J Org Chem; 2001 Sep; 66(18):6136-40. PubMed ID: 11529742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines.
    Wen K; Yu S; Huang Z; Chen L; Xiao M; Yu X; Pu L
    J Am Chem Soc; 2015 Apr; 137(13):4517-24. PubMed ID: 25790271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bisbinaphthyl macrocycle-based highly enantioselective fluorescent sensors for alpha-hydroxycarboxylic acids.
    Lin J; Zhang HC; Pu L
    Org Lett; 2002 Sep; 4(19):3297-300. PubMed ID: 12227773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective and Chemoselective Optical Detection of Chiral Organic Compounds without Resorting to Chromatography.
    Bhushan R
    Chem Asian J; 2023 Dec; 18(24):e202300825. PubMed ID: 37906446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective fluorescent sensors for amino acid derivatives based on BINOL bearing S-tryptophan unit: synthesis and chiral recognition.
    Xu KX; Cheng PF; Zhao J; Wang CJ
    J Fluoresc; 2011 May; 21(3):991-1000. PubMed ID: 20054706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the fluorescent properties of partially hydrogenated 1,1'-bi-2-naphthol-amine molecules and their use for enantioselective fluorescent recognition.
    Yu S; DeBerardinis AM; Turlington M; Pu L
    J Org Chem; 2011 Apr; 76(8):2814-9. PubMed ID: 21405012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism.
    Jo HH; Lin CY; Anslyn EV
    Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Highly Fluorinated Chiral Aldehyde for Enantioselective Fluorescent Recognition in a Biphasic System.
    Wang C; Wu X; Pu L
    Chemistry; 2017 Aug; 23(45):10749-10752. PubMed ID: 28675621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Fluorescence-Based High-Throughput Screening for Enantiomeric Excess in Amines and Amino Acid Derivatives.
    Shcherbakova EG; Brega V; Minami T; Sheykhi S; James TD; Anzenbacher P
    Chemistry; 2016 Jul; 22(29):10074-80. PubMed ID: 27271215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective Recognition and Separation of
    Weng ZZ; Xu H; Zhang W; Zhuang GL; Long LS; Kong XJ; Zheng LS
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37412-37421. PubMed ID: 34340310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols.
    Wanderley MM; Wang C; Wu CD; Lin W
    J Am Chem Soc; 2012 Jun; 134(22):9050-3. PubMed ID: 22607498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Enantioselective Fluorescent Recognition of Both Unfunctionalized and Functionalized Chiral Amines by a Facile Amide Formation from a Perfluoroalkyl Ketone.
    Wang C; Anbaei P; Pu L
    Chemistry; 2016 May; 22(21):7255-61. PubMed ID: 27061205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral BINOL-Based Covalent Organic Frameworks for Enantioselective Sensing.
    Wu X; Han X; Xu Q; Liu Y; Yuan C; Yang S; Liu Y; Jiang J; Cui Y
    J Am Chem Soc; 2019 May; 141(17):7081-7089. PubMed ID: 30971083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced enantioselective recognition with diastereoisomeric BINOL based chiral fluorescent boronic acid sensors.
    Li Q; Guo H; Wu Y; Zhang X; Liu Y; Zhao J
    J Fluoresc; 2011 Nov; 21(6):2077-84. PubMed ID: 21637998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphiphilic Polymer-Based Fluorescent Probe for Enantioselective Recognition of Amino Acids in Immiscible Water and Organic Phases.
    Nian S; Pu L
    Chemistry; 2017 Dec; 23(71):18066-18073. PubMed ID: 29069528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudoenantiomeric fluorescent sensors in a chiral assay.
    Yu S; Pu L
    J Am Chem Soc; 2010 Dec; 132(50):17698-700. PubMed ID: 21121601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.