These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32960595)

  • 1.
    Pylkkänen R; Mohammadi P; Arola S; de Ruijter JC; Sunagawa N; Igarashi K; Penttilä M
    Biomacromolecules; 2020 Oct; 21(10):4355-4364. PubMed ID: 32960595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycoside Phosphorylase Catalyzed Cellulose and β-1,3-Glucan Synthesis Using Chromophoric Glycosyl Acceptors.
    Pylkkänen R; Maaheimo H; Liljeström V; Mohammadi P; Penttilä M
    Biomacromolecules; 2024 Aug; 25(8):5048-5057. PubMed ID: 39025475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum.
    Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B
    Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadening the Substrate Specificity of Cellobiose Phosphorylase from
    Zhang Y; Li Y; Lin H; Mao G; Long X; Liu X; Chen H
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusion of a family 9 cellulose-binding module improves catalytic potential of Clostridium thermocellum cellodextrin phosphorylase on insoluble cellulose.
    Ye X; Zhu Z; Zhang C; Zhang YH
    Appl Microbiol Biotechnol; 2011 Nov; 92(3):551-60. PubMed ID: 21630044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials.
    Nidetzky B; Zhong C
    Biotechnol Adv; 2021 Nov; 51():107633. PubMed ID: 32966861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Recognition of Natural and Non-Natural Substrates by Cellodextrin Phosphorylase from Ruminiclostridium Thermocellum Investigated by NMR Spectroscopy.
    Gabrielli V; Muñoz-García JC; Pergolizzi G; de Andrade P; Khimyak YZ; Field RA; Angulo J
    Chemistry; 2021 Nov; 27(63):15688-15698. PubMed ID: 34436794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate.
    Bianchetti CM; Elsen NL; Fox BG; Phillips GN
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Nov; 67(Pt 11):1345-9. PubMed ID: 22102229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of radiolabeled cellodextrins by the Clostridium thermocellum cellobiose and cellodextrin phosphorylases for measurement of intracellular sugars.
    Zhang YH; Lynd LR
    Appl Microbiol Biotechnol; 2006 Mar; 70(1):123-9. PubMed ID: 16402169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture.
    Stevenson DM; Weimer PJ
    Appl Environ Microbiol; 2005 Aug; 71(8):4672-8. PubMed ID: 16085862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of cellobiose phosphorylase for the defined synthesis of cellotriose.
    Ubiparip Z; Moreno DS; Beerens K; Desmet T
    Appl Microbiol Biotechnol; 2020 Oct; 104(19):8327-8337. PubMed ID: 32803296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of highly ordered cellulose II in vitro using cellodextrin phosphorylase.
    Hiraishi M; Igarashi K; Kimura S; Wada M; Kitaoka M; Samejima M
    Carbohydr Res; 2009 Dec; 344(18):2468-73. PubMed ID: 19879558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic synthesis and post-functionalization of two-dimensional crystalline cellulose oligomers with surface-reactive groups.
    Yataka Y; Sawada T; Serizawa T
    Chem Commun (Camb); 2015 Aug; 51(63):12525-8. PubMed ID: 26139390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellodextrin and laminaribiose ABC transporters in Clostridium thermocellum.
    Nataf Y; Yaron S; Stahl F; Lamed R; Bayer EA; Scheper TH; Sonenshein AL; Shoham Y
    J Bacteriol; 2009 Jan; 191(1):203-9. PubMed ID: 18952792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium.
    Reichenbecher M; Lottspeich F; Bronnenmeier K
    Eur J Biochem; 1997 Jul; 247(1):262-7. PubMed ID: 9249035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum.
    Holwerda EK; Lynd LR
    Biotechnol Bioeng; 2013 Sep; 110(9):2389-94. PubMed ID: 23568291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembly of Cellulose Oligomers into Nanoribbon Network Structures Based on Kinetic Control of Enzymatic Oligomerization.
    Serizawa T; Fukaya Y; Sawada T
    Langmuir; 2017 Nov; 33(46):13415-13422. PubMed ID: 29076732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Free Cysteine Residues to Serine Mutation on Cellodextrin Phosphorylase.
    Kuga T; Sunagawa N; Igarashi K
    J Appl Glycosci (1999); 2024; 71(2):37-46. PubMed ID: 38863949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of cellobiose and D-glucose by Clostridium thermocellum ATCC-27405.
    Hernández PE; Ordóñez JA; Sanz B
    Rev Esp Fisiol; 1985 Jun; 41(2):195-9. PubMed ID: 2930887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic synthesis of cellulose in space: gravity is a crucial factor for building cellulose II gel structure.
    Kuga T; Sunagawa N; Igarashi K
    Cellulose (Lond); 2022; 29(5):2999-3015. PubMed ID: 35125685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.