These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32960614)

  • 1. Tolman's Electronic Parameter of the Ligand Predicts Phase in the Cation Exchange to CuFeS
    Sharp CG; Leach ADP; Macdonald JE
    Nano Lett; 2020 Dec; 20(12):8556-8562. PubMed ID: 32960614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New organometallic single-source precursors for CuGaS(2)-polytypism in gallite nanocrystals obtained by thermolysis.
    Kluge O; Friedrich D; Wagner G; Krautscheid H
    Dalton Trans; 2012 Jul; 41(28):8635-42. PubMed ID: 22684195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable Synthesis of a Sub-10 nm Chalcopyrite (CuFeS
    Kumar B; Singh SV; Chattopadhyay A; Biring S; Pal BN
    ACS Omega; 2020 Oct; 5(40):25947-25953. PubMed ID: 33073121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase control and its mechanism of CuInS2 nanoparticles.
    Kuzuya T; Hamanaka Y; Itoh K; Kino T; Sumiyama K; Fukunaka Y; Hirai S
    J Colloid Interface Sci; 2012 Dec; 388(1):137-43. PubMed ID: 22944477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and high-pressure transformation of metastable wurtzite-structured CuGaS2 nanocrystals.
    Xiao N; Zhu L; Wang K; Dai Q; Wang Y; Li S; Sui Y; Ma Y; Liu J; Liu B; Zou G; Zou B
    Nanoscale; 2012 Dec; 4(23):7443-7. PubMed ID: 23086438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precursor driven one pot synthesis of wurtzite and chalcopyrite CuFeS2.
    Kumar P; Uma S; Nagarajan R
    Chem Commun (Camb); 2013 Aug; 49(66):7316-8. PubMed ID: 23852420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Characterization of Bidentate P-Donor Ligands: Direct Comparison to Tolman's Electronic Parameters.
    Kégl TR; Pálinkás N; Kollár L; Kégl T
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30513796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-Assisted Solution Synthesis of Metastable Intergrowth of AgInS
    Adeyemi AN; Earnest RA; Cox T; Lebedev OI; Zaikina JV
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-Selective Synthesis of Wurtzite and Zincblende ZnS, CdS, and CuInS
    Fenton JL; Steimle BC; Schaak RE
    Inorg Chem; 2019 Jan; 58(1):672-678. PubMed ID: 30525523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preserving Both Anion and Cation Sublattice Features during a Nanocrystal Cation-Exchange Reaction: Synthesis of Metastable Wurtzite-Type CoS and MnS.
    Powell AE; Hodges JM; Schaak RE
    J Am Chem Soc; 2016 Jan; 138(2):471-4. PubMed ID: 26689081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution and analytical TEM investigation of metastable-tetragonal phase stabilization in undoped nanocrystalline zirconia.
    Oleshko VP; Howe JM; Shukla S; Seal S
    J Nanosci Nanotechnol; 2004 Sep; 4(7):867-75. PubMed ID: 15570974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans.
    Lara RH; García-Meza JV; González I; Cruz R
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2711-24. PubMed ID: 22584430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and Theoretical Study of Stable and Metastable Phases in Sputtered CuInS
    Larsen JK; Sopiha KV; Persson C; Platzer-Björkman C; Edoff M
    Adv Sci (Weinh); 2022 Aug; 9(23):e2200848. PubMed ID: 35726048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational materials design of negative effective U system in hole-doped chalcopyrite CuFeS2.
    Fukushima T; Katayama-Yoshida H; Uede H; Takawashi Y; Nakanishi A; Sato K
    J Phys Condens Matter; 2014 Sep; 26(35):355502. PubMed ID: 25109352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphine-Induced Phase Transition in Copper Sulfide Nanoparticles Prior to Initiation of a Cation Exchange Reaction.
    Steimle BC; Lord RW; Schaak RE
    J Am Chem Soc; 2020 Aug; 142(31):13345-13349. PubMed ID: 32700901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and stability of single-phase chalcopyrite - a potential reference material for key investigations in chemistry and metallurgical engineering.
    Frenzel N; Mehne M; Bette S; Kureti S; Frisch G
    RSC Adv; 2021 Jan; 11(5):3153-3161. PubMed ID: 35424217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of hexagonal structured wurtzite and chalcopyrite CuInS2 via a simple solution route.
    Sheng X; Wang L; Luo Y; Yang D
    Nanoscale Res Lett; 2011 Oct; 6(1):562. PubMed ID: 22027183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution-based synthesis of wurtzite Cu2ZnSnS4 nanoleaves introduced by α-Cu2S nanocrystals as a catalyst.
    Zhang W; Zhai L; He N; Zou C; Geng X; Cheng L; Dong Y; Huang S
    Nanoscale; 2013 Sep; 5(17):8114-21. PubMed ID: 23884477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretation of Tolman electronic parameters in the light of natural orbitals for chemical valence.
    Ardizzoia GA; Brenna S
    Phys Chem Chem Phys; 2017 Feb; 19(8):5971-5978. PubMed ID: 28180221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of a Wurtzite-like Cu
    Tappan BA; Chu W; Mecklenburg M; Prezhdo OV; Brutchey RL
    ACS Nano; 2021 Aug; 15(8):13463-13474. PubMed ID: 34346226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.