BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32960656)

  • 1. Scrutinising the relationship between major physiological and compositional changes during 'Merrill O'Henry' peach growth with brown rot susceptibility.
    Baró-Montel N; Giné-Bordonaba J; Torres R; Vall-Llaura N; Teixidó N; Usall J
    Food Sci Technol Int; 2021 Jun; 27(4):366-379. PubMed ID: 32960656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-sided battle: The role of ethylene during Monilinia spp. infection in peach at different phenological stages.
    Baró-Montel N; Vall-Llaura N; Giné-Bordonaba J; Usall J; Serrano-Prieto S; Teixidó N; Torres R
    Plant Physiol Biochem; 2019 Nov; 144():324-333. PubMed ID: 31606717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene biosynthesis and response factors are differentially modulated during the interaction of peach petals with Monilinia laxa or Monilinia fructicola.
    Vall-Llaura N; Giné-Bordonaba J; Usall J; Larrigaudière C; Teixidó N; Torres R
    Plant Sci; 2020 Oct; 299():110599. PubMed ID: 32900437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antagonistic activities of volatiles produced by two Bacillus strains against Monilinia fructicola in peach fruit.
    Liu C; Yin X; Wang Q; Peng Y; Ma Y; Liu P; Shi J
    J Sci Food Agric; 2018 Dec; 98(15):5756-5763. PubMed ID: 29756313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring sources of resistance to brown rot in an interspecific almond × peach population.
    Baró-Montel N; Eduardo I; Usall J; Casals C; Arús P; Teixidó N; Torres R
    J Sci Food Agric; 2019 Jun; 99(8):4105-4113. PubMed ID: 30784078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis upon peach fruit infection with Monilinia fructicola and M. laxa identify responses contributing to brown rot resistance.
    Papavasileiou A; Tanou G; Samaras A; Samiotaki M; Molassiotis A; Karaoglanidis G
    Sci Rep; 2020 May; 10(1):7807. PubMed ID: 32385387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fruit maturity and post-harvest environmental conditions influence the pre-penetration stages of Monilinia infections in peaches.
    Garcia-Benitez C; Melgarejo P; De Cal A
    Int J Food Microbiol; 2017 Jan; 241():117-122. PubMed ID: 27768931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.
    Villarino M; Melgarejo P; De Cal A
    Int J Food Microbiol; 2016 Jun; 227():6-12. PubMed ID: 27043383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and Differentiation of Monilinia Species Causing Brown Rot of Pome and Stone Fruit using High-Resolution Melting (HRM) Analysis.
    Papavasileiou A; Madesis PB; Karaoglanidis GS
    Phytopathology; 2016 Sep; 106(9):1055-64. PubMed ID: 27247082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Model for Temporal Dynamics of Brown Rot Spreading in Fruit Orchards.
    Bevacqua D; Quilot-Turion B; Bolzoni L
    Phytopathology; 2018 May; 108(5):595-601. PubMed ID: 29182471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relevance of the main postharvest handling operations on the development of brown rot disease on stone fruits.
    Bernat M; Segarra J; Casals C; Teixidó N; Torres R; Usall J
    J Sci Food Agric; 2017 Dec; 97(15):5319-5326. PubMed ID: 28485472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.
    Villarino M; Melgarejo P; De Cal A
    Int J Food Microbiol; 2016 May; 224():22-7. PubMed ID: 26918325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Bacillus Subtilis CF-3 VOCs Combined with Heat Treatment on the Control of Monilinia fructicola in Peaches and Colletotrichum gloeosporioides in Litchi Fruit.
    Wu S; Zhen C; Wang K; Gao H
    J Food Sci; 2019 Dec; 84(12):3418-3428. PubMed ID: 31762032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cuticular waxes of nectarines during fruit development in relation to surface conductance and susceptibility to Monilinia laxa.
    Oliveira Lino L; Quilot-Turion B; Dufour C; Corre MN; Lessire R; Génard M; Poëssel JL
    J Exp Bot; 2020 Sep; 71(18):5521-5537. PubMed ID: 32556164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a novel strain, Streptomyces blastmyceticus JZB130180, and evaluation of its biocontrol efficacy against Monilinia fructicola.
    Ni M; Wu Q; Wang HL; Liu WC; Hu B; Zhang DP; Zhao J; Liu DW; Lu CG
    J Zhejiang Univ Sci B; 2019 Jan.; 20(1):84-94. PubMed ID: 30614232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refinement of Peach Cover Spray Programs for Management of Brown Rot at Harvest.
    Lalancette N; Blaus LL; Engel P
    Plant Dis; 2020 May; 104(5):1527-1533. PubMed ID: 32105573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide association analysis of
    Martínez-García PJ; Mas-Gómez J; Prudencio ÁS; Barriuso JJ; Cantín CM
    Front Plant Sci; 2023; 14():1165847. PubMed ID: 37936940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stone fruit phenolic and triterpenoid compounds modulate gene expression of Monilinia spp. in culture media.
    Mustafa MH; Corre MN; Heurtevin L; Bassi D; Cirilli M; Quilot-Turion B
    Fungal Biol; 2023; 127(7-8):1085-1097. PubMed ID: 37495299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal Activity of Some Constituents of Origanum vulgare L. Essential Oil Against Postharvest Disease of Peach Fruit.
    Elshafie HS; Mancini E; Sakr S; De Martino L; Mattia CA; De Feo V; Camele I
    J Med Food; 2015 Aug; 18(8):929-34. PubMed ID: 25599273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of peach trichome removal on post-harvest brown rot and on the fruit surface microbiome.
    Shen Y; Li X; Xiong R; Ni Y; Tian S; Li B
    Int J Food Microbiol; 2023 Oct; 402():110299. PubMed ID: 37379647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.