BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 32961176)

  • 41. Formation of shelf stable Pickering high internal phase emulsions (HIPE) through the inclusion of whey protein microgels.
    Zamani S; Malchione N; Selig MJ; Abbaspourrad A
    Food Funct; 2018 Feb; 9(2):982-990. PubMed ID: 29334398
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synergistic stabilization of a menthol Pickering emulsion by zein nanoparticles and starch nanocrystals: Preparation, structural characterization, and functional properties.
    Yang M; Cheng S; Lü L; Han Z; He J
    PLoS One; 2024; 19(6):e0303964. PubMed ID: 38843222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rheology and stability of acidified food emulsions treated with high pressure.
    Arora A; Chism GW; Shellhammer TH
    J Agric Food Chem; 2003 Apr; 51(9):2591-6. PubMed ID: 12696942
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Elucidating the effect of enzymatic polymerized polysaccharide particle morphology on emulsion properties.
    Kedzior SA; Cranmer-Smith S; Behabtu N; Kim K; Lenges C; Bryant SL; Trifkovic M
    Carbohydr Polym; 2021 Jan; 251():117112. PubMed ID: 33142649
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pickering emulsion gel stabilized by octenylsuccinate quinoa starch granule as lutein carrier: Role of the gel network.
    Li S; Zhang B; Li C; Fu X; Huang Q
    Food Chem; 2020 Feb; 305():125476. PubMed ID: 31525589
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface-active solid lipid nanoparticles as Pickering stabilizers for oil-in-water emulsions.
    Gupta R; Rousseau D
    Food Funct; 2012 Mar; 3(3):302-11. PubMed ID: 22237667
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparation and characterization of pH-responsive Pickering emulsion stabilized by grafted carboxymethyl starch nanoparticles.
    Xiao Z; Wang L; Lv C; Guo S; Lu X; Tao L; Duan Q; Yang Q; Luo Z
    Int J Biol Macromol; 2020 Jan; 143():401-412. PubMed ID: 31760022
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alginate-based emulsion template containing high oil loading stabilized by nonionic surfactants.
    Ong WD; Tey BT; Quek SY; Tang SY; Chan ES
    J Food Sci; 2015 Jan; 80(1):E93-E100. PubMed ID: 25529579
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A composite chitosan derivative nanoparticle to stabilize a W
    Fu J; Zhu Y; Cheng F; Zhang S; Xiu T; Hu Y; Yang S
    Carbohydr Polym; 2021 Mar; 256():117533. PubMed ID: 33483050
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of Clotrimazole Multiple W/O/W Emulsions as Vehicles for Drug Delivery: Effects of Additives on Emulsion Stability.
    Suñer J; Calpena AC; Clares B; Cañadas C; Halbaut L
    AAPS PharmSciTech; 2017 Feb; 18(2):539-550. PubMed ID: 27126008
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pickering emulsions stabilized by media-milled starch particles.
    Lu X; Xiao J; Huang Q
    Food Res Int; 2018 Mar; 105():140-149. PubMed ID: 29433201
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor.
    Sarheed O; Shouqair D; Ramesh KVRNS; Khaleel T; Amin M; Boateng J; Drechsler M
    Int J Pharm; 2020 Feb; 576():118952. PubMed ID: 31843549
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oil-in-water Pickering emulsions using a protein nano-ring as high-grade emulsifiers.
    Xu B; Liu C; Sun H; Wang X; Huang F
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110646. PubMed ID: 31785851
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of finely dispersed O/W emulsion from fatty acid solubilized in subcritical water.
    Khuwijitjaru P; Kimura Y; Matsuno R; Adachi S
    J Colloid Interface Sci; 2004 Oct; 278(1):192-7. PubMed ID: 15313654
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formation of vitamin E emulsion stabilized by octenylsuccinic starch: factors affecting particle size and oil load.
    Qiu D; Yang L; Shi YC
    J Food Sci; 2015 Apr; 80(4):C680-6. PubMed ID: 25808448
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoemulsion encapsulation and in vitro SLN models of delivery for cytotoxic methotrexate.
    Concannon C; Hennelly DA; Noott S; Sarker DK
    Curr Drug Discov Technol; 2010 Jun; 7(2):123-36. PubMed ID: 20836756
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of Ethanol on Emulsions Stabilized by Low Molecular Weight Surfactants.
    Ferreira AC; Sullo A; Winston S; Norton IT; Norton-Welch AB
    J Food Sci; 2020 Jan; 85(1):28-35. PubMed ID: 31840826
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High stability of bilayer nano-emulsions fabricated by Tween 20 and specific interfacial peptides.
    Zhao Q; Wu C; Yu C; Bi A; Xu X; Du M
    Food Chem; 2021 Mar; 340():127877. PubMed ID: 32889201
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of the degree of substitution of octenyl succinic anhydride-banana starch on emulsion stability.
    Bello-Pérez LA; Bello-Flores CA; Nuñez-Santiago Mdel C; Coronel-Aguilera CP; Alvarez-Ramirez J
    Carbohydr Polym; 2015 Nov; 132():17-24. PubMed ID: 26256319
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Destabilization of a model O/W/O double emulsion: From bulk to interface.
    Zhi Z; Li H; Geurs I; Lewille B; Liu R; Van der Meeren P; Dewettinck K; van Bockstaele F
    Food Chem; 2024 Jul; 445():138723. PubMed ID: 38350201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.