BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 32961176)

  • 61. Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles.
    Worthen AJ; Foster LM; Dong J; Bollinger JA; Peterman AH; Pastora LE; Bryant SL; Truskett TM; Bielawski CW; Johnston KP
    Langmuir; 2014 Feb; 30(4):984-94. PubMed ID: 24409832
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Interfacial adsorption of peptides in oil-in-water emulsions costabilized by Tween 20 and antioxidative potato peptides.
    Cheng Y; Chen J; Xiong YL
    J Agric Food Chem; 2014 Nov; 62(47):11575-81. PubMed ID: 25372669
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dispersed droplets as active fillers in fat-crystal network-stabilized water-in-oil emulsions.
    Rafanan R; Rousseau D
    Food Res Int; 2017 Sep; 99(Pt 1):355-362. PubMed ID: 28784493
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Behavior of soybean oil-in-water emulsion stabilized by nonionic surfactant.
    Hsu JP; Nacu A
    J Colloid Interface Sci; 2003 Mar; 259(2):374-81. PubMed ID: 16256518
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Starch nanocrystals as particle stabilisers of oil-in-water emulsions.
    Li C; Li Y; Sun P; Yang C
    J Sci Food Agric; 2014 Jul; 94(9):1802-7. PubMed ID: 24282158
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Pickering emulsion: A multi-scale stabilization mechanism based on modified lotus root starch/xanthan gum nanoparticles.
    Ren X; Zhou C; Qayum A; Tang J; Liang Q
    Int J Biol Macromol; 2023 Apr; 233():123459. PubMed ID: 36739046
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Particle-stabilizers modified from indica rice starches differing in amylose content.
    Song X; Pei Y; Zhu W; Fu D; Ren H
    Food Chem; 2014 Jun; 153():74-80. PubMed ID: 24491702
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Kinetic study of aggregation of milk protein and/or surfactant-stabilized oil-in-water emulsions by sedimentation field-flow fractionation.
    Kenta S; Raikos V; Vagena A; Sevastos D; Kapolos J; Koliadima A; Karaiskakis G
    J Chromatogr A; 2013 Aug; 1305():221-9. PubMed ID: 23899382
    [TBL] [Abstract][Full Text] [Related]  

  • 69. O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration.
    Pichot R; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2010 Dec; 352(1):128-35. PubMed ID: 20817195
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Scanning microbeam small-angle X-ray diffraction study of interfacial heterogeneous crystallization of fat crystals in oil-in-water emulsion droplets.
    Arima S; Ueno S; Ogawa A; Sato K
    Langmuir; 2009 Sep; 25(17):9777-84. PubMed ID: 19588887
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Metal-Phenolic Network Covering on Zein Nanoparticles as a Regulator on the Oil/Water Interface.
    Wu D; Dai Y; Huang Y; Gao J; Liang H; Eid M; Deng Q; Zhou B
    J Agric Food Chem; 2020 Aug; 68(31):8471-8482. PubMed ID: 32663391
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Starch-lauric acid complex-stabilised Pickering emulsion gels enhance the thermo-oxidative resistance of flaxseed oil.
    Feng Y; Zhang B; Fu X; Huang Q
    Carbohydr Polym; 2022 Sep; 292():119715. PubMed ID: 35725189
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dynamic Aroma Release from Complex Food Emulsions.
    Pu X; Linforth R; Dragosavac MM; Wolf B
    J Agric Food Chem; 2019 Aug; 67(33):9325-9334. PubMed ID: 31318196
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Preparation of chitosan/gum Arabic nanoparticles and their use as novel stabilizers in oil/water Pickering emulsions.
    Sharkawy A; Barreiro MF; Rodrigues AE
    Carbohydr Polym; 2019 Nov; 224():115190. PubMed ID: 31472873
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of formulation parameters on lipid oxidative stability of Pickering emulsion stabilized by hydrophobically modified starch particles.
    Zhu W; Zheng F; Song X; Ren H; Gong H
    Carbohydr Polym; 2020 Oct; 246():116649. PubMed ID: 32747281
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chitin nanocrystals/alginate complex for tuning stability, rheology and bioavailability of cholecalciferol in Pickering emulsions.
    Torlopov MA; Vaseneva IN; Mikhaylov VI; Martakov IS; Legki PV; Sitnikov PA
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130671. PubMed ID: 38458286
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mechanism of synergistic stabilization of emulsions by amorphous taro starch and protein and emulsion stability.
    Fan H; Zhu P; Hui G; Shen Y; Yong Z; Xie Q; Wang M
    Food Chem; 2023 Oct; 424():136342. PubMed ID: 37209438
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Development of β-carotene loaded oil-in-water emulsions using mixed biopolymer-particle-surfactant interfaces.
    Wei Y; Zhou D; Yang S; Dai L; Zhang L; Mao L; Gao Y; Mackie A
    Food Funct; 2021 Apr; 12(7):3246-3265. PubMed ID: 33877248
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Importance of bacterial surface properties to control the stability of emulsions.
    Ly MH; Naïtali-Bouchez M; Meylheuc T; Bellon-Fontaine MN; Le TM; Belin JM; Waché Y
    Int J Food Microbiol; 2006 Oct; 112(1):26-34. PubMed ID: 16952409
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Oral behaviour of emulsions stabilized by mixed monolayer.
    Karthik P; Ettelaie R; Chen J
    Food Res Int; 2019 Nov; 125():108603. PubMed ID: 31554053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.