BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32961188)

  • 1. A highly divergent α-amylase from Streptomyces spp.: An evolutionary perspective.
    Lakshmi SA; Shafreen RB; Priyanga A; Shiburaj S; Pandian SK
    Int J Biol Macromol; 2020 Nov; 163():2415-2428. PubMed ID: 32961188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning, expression, homology modelling and molecular dynamics simulation of four domain-containing α-amylase from Streptomyces griseus.
    Lakshmi SA; Shafreen RB; Balaji K; Ibrahim KS; Shiburaj S; Gayathri V; Pandian SK
    J Biomol Struct Dyn; 2021 Apr; 39(6):2152-2163. PubMed ID: 32193988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The noncatalytic triad of alpha-amylases: a novel structural motif involved in conformational stability.
    Marx JC; Poncin J; Simorre JP; Ramteke PW; Feller G
    Proteins; 2008 Feb; 70(2):320-8. PubMed ID: 17729287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural similarities and evolutionary relationships in chloride-dependent alpha-amylases.
    D'Amico S; Gerday C; Feller G
    Gene; 2000 Jul; 253(1):95-105. PubMed ID: 10925206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid sequence of protein alpha-amylase inhibitor from Streptomyces griseosporeus YM-25.
    Murai H; Hara S; Ikenaka T; Goto A; Arai M; Murao S
    J Biochem; 1985 Apr; 97(4):1129-33. PubMed ID: 3875608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of alpha-amylase activation by chloride.
    Aghajari N; Feller G; Gerday C; Haser R
    Protein Sci; 2002 Jun; 11(6):1435-41. PubMed ID: 12021442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular alpha-amylase from Streptomyces rimosus.
    Vukelić B; Ritonja A; Renko M; Pokorny M; Vitale L
    Appl Microbiol Biotechnol; 1992 May; 37(2):202-4. PubMed ID: 1368240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning, expression and characterization of alpha-amylase gene from a marine bacterium Pseudoalteromonas sp. MY-1.
    Tao X; Jang MS; Kim KS; Yu Z; Lee YC
    Indian J Biochem Biophys; 2008 Oct; 45(5):305-9. PubMed ID: 19069841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and characterization of an alpha-amylase gene from Streptomyces sp WL6.
    Chen I; Marcos AT; da Costa SO; Martin JF; Padilla G
    Biochem Mol Biol Int; 1995 Apr; 35(5):1059-67. PubMed ID: 7549924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual effects of an extra disulfide bond on the activity and stability of a cold-adapted alpha-amylase.
    D'Amico S; Gerday C; Feller G
    J Biol Chem; 2002 Nov; 277(48):46110-5. PubMed ID: 12324460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading.
    Sumitani J; Tottori T; Kawaguchi T; Arai M
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):477-84. PubMed ID: 10947962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous expression and biochemical characterization of a novel cold-active α-amylase from the Antarctic bacteria Pseudoalteromonas sp. 2-3.
    Sanchez AC; Ravanal MC; Andrews BA; Asenjo JA
    Protein Expr Purif; 2019 Mar; 155():78-85. PubMed ID: 30496815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence similarities and evolutionary relationships of microbial, plant and animal alpha-amylases.
    Janecek S
    Eur J Biochem; 1994 Sep; 224(2):519-24. PubMed ID: 7925367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The precursor of a psychrophilic alpha-amylase: structural characterization and insights into cold adaptation.
    Claverie P; Vigano C; Ruysschaert JM; Gerday C; Feller G
    Biochim Biophys Acta; 2003 Jul; 1649(2):119-22. PubMed ID: 12878029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of disulfide bridges in the activity and stability of a cold-active alpha-amylase.
    Siddiqui KS; Poljak A; Guilhaus M; Feller G; D'Amico S; Gerday C; Cavicchioli R
    J Bacteriol; 2005 Sep; 187(17):6206-12. PubMed ID: 16109962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal stability and starch degradation profile of α-amylase from Streptomyces avermitilis.
    Hwang SY; Nakashima K; Okai N; Okazaki F; Miyake M; Harazono K; Ogino C; Kondo A
    Biosci Biotechnol Biochem; 2013; 77(12):2449-53. PubMed ID: 24317063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of lysine versus arginine in enzyme cold-adaptation: modifying lysine to homo-arginine stabilizes the cold-adapted alpha-amylase from Pseudoalteramonas haloplanktis.
    Siddiqui KS; Poljak A; Guilhaus M; De Francisci D; Curmi PM; Feller G; D'Amico S; Gerday C; Uversky VN; Cavicchioli R
    Proteins; 2006 Aug; 64(2):486-501. PubMed ID: 16705665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amylolytic enzymes: molecular aspects of their properties.
    Horváthová V; Janecek S; Sturdík E
    Gen Physiol Biophys; 2001 Mar; 20(1):7-32. PubMed ID: 11508823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Cloning and Characterization of a Novel
    Wang X; Kan G; Ren X; Yu G; Shi C; Xie Q; Wen H; Betenbaugh M
    Biomed Res Int; 2018; 2018():3258383. PubMed ID: 30050926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase.
    D'Amico S; Sohier JS; Feller G
    J Mol Biol; 2006 May; 358(5):1296-304. PubMed ID: 16580683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.