BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 32961385)

  • 1. Deep learning can generate traditional retinal fundus photographs using ultra-widefield images via generative adversarial networks.
    Yoo TK; Ryu IH; Kim JK; Lee IS; Kim JS; Kim HK; Choi JY
    Comput Methods Programs Biomed; 2020 Dec; 197():105761. PubMed ID: 32961385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CycleGAN-based deep learning technique for artifact reduction in fundus photography.
    Yoo TK; Choi JY; Kim HK
    Graefes Arch Clin Exp Ophthalmol; 2020 Aug; 258(8):1631-1637. PubMed ID: 32361805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translation of paired fundus photographs to fluorescein angiographs with energy-based cycle-consistent adversarial networks.
    Kang TS; Shon K; Park S; Lee W; Kim BJ; Han YS
    Medicine (Baltimore); 2023 Jul; 102(27):e34161. PubMed ID: 37417629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs.
    Tavakkoli A; Kamran SA; Hossain KF; Zuckerbrod SL
    Sci Rep; 2020 Dec; 10(1):21580. PubMed ID: 33299065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint Optimization of CycleGAN and CNN Classifier for Detection and Localization of Retinal Pathologies on Color Fundus Photographs.
    Zhang Z; Ji Z; Chen Q; Yuan S; Fan W
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):115-126. PubMed ID: 34197329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Detection of Sea Fan Neovascularization From Ultra-Widefield Color Fundus Photographs of Patients With Sickle Cell Hemoglobinopathy.
    Cai S; Parker F; Urias MG; Goldberg MF; Hager GD; Scott AW
    JAMA Ophthalmol; 2021 Feb; 139(2):206-213. PubMed ID: 33377944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs.
    Liu H; Li L; Wormstone IM; Qiao C; Zhang C; Liu P; Li S; Wang H; Mou D; Pang R; Yang D; Zangwill LM; Moghimi S; Hou H; Bowd C; Jiang L; Chen Y; Hu M; Xu Y; Kang H; Ji X; Chang R; Tham C; Cheung C; Ting DSW; Wong TY; Wang Z; Weinreb RN; Xu M; Wang N
    JAMA Ophthalmol; 2019 Dec; 137(12):1353-1360. PubMed ID: 31513266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normalization of HE-stained histological images using cycle consistent generative adversarial networks.
    Runz M; Rusche D; Schmidt S; Weihrauch MR; Hesser J; Weis CA
    Diagn Pathol; 2021 Aug; 16(1):71. PubMed ID: 34362386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Ensemble Learning Based Objective Grading of Macular Edema by Extracting Clinically Significant Findings from Fused Retinal Imaging Modalities.
    Hassan B; Hassan T; Li B; Ahmed R; Hassan O
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a generative deep learning model to improve epiretinal membrane detection in fundus photography.
    Choi JY; Ryu IH; Kim JK; Lee IS; Yoo TK
    BMC Med Inform Decis Mak; 2024 Jan; 24(1):25. PubMed ID: 38273286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning-based Prediction of Axial Length Using Ultra-widefield Fundus Photography.
    Oh R; Lee EK; Bae K; Park UC; Yu HG; Yoon CK
    Korean J Ophthalmol; 2023 Apr; 37(2):95-104. PubMed ID: 36758539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative Adversarial Network for Medical Images (MI-GAN).
    Iqbal T; Ali H
    J Med Syst; 2018 Oct; 42(11):231. PubMed ID: 30315368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Detection of Early Retinal Peripheral Degeneration From Ultra-Widefield Fundus Photographs of Asymptomatic Young Adult (17-19 Years) Candidates to Airforce Cadets.
    Wu T; Ju L; Fu X; Wang B; Ge Z; Liu Y
    Transl Vis Sci Technol; 2024 Feb; 13(2):1. PubMed ID: 38300623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration.
    Burlina PM; Joshi N; Pacheco KD; Liu TYA; Bressler NM
    JAMA Ophthalmol; 2019 Mar; 137(3):258-264. PubMed ID: 30629091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging Regular Fundus Images for Training UWF Fundus Diagnosis Models via Adversarial Learning and Pseudo-Labeling.
    Ju L; Wang X; Zhao X; Bonnington P; Drummond T; Ge Z
    IEEE Trans Med Imaging; 2021 Oct; 40(10):2911-2925. PubMed ID: 33531297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning approach for detection of shallow anterior chamber depth based on the hidden features of fundus photographs.
    Yoo TK; Ryu IH; Kim JK; Lee IS; Kim HK
    Comput Methods Programs Biomed; 2022 Jun; 219():106735. PubMed ID: 35305492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint conditional generative adversarial networks for eyelash artifact removal in ultra-wide-field fundus images.
    Zhang J; Sha D; Ma Y; Zhang D; Tan T; Xu X; Yi Q; Zhao Y
    Front Cell Dev Biol; 2023; 11():1181305. PubMed ID: 37215081
    [No Abstract]   [Full Text] [Related]  

  • 18. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning.
    Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of Conventional
    Choi HJ; Seo M; Kim A; Park SH
    Medicina (Kaunas); 2023 Jul; 59(7):. PubMed ID: 37512092
    [No Abstract]   [Full Text] [Related]  

  • 20. Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images.
    Oh K; Kang HM; Leem D; Lee H; Seo KY; Yoon S
    Sci Rep; 2021 Jan; 11(1):1897. PubMed ID: 33479406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.