These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32961673)

  • 1. Opto-Microfluidic System for Absorbance Measurements in Lithium Niobate Device Applied to pH Measurements.
    Zamboni R; Zaltron A; Izzo E; Bottaro G; Ferraro D; Sada C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opto-microfluidic coupling between optical waveguides and tilted microchannels in lithium niobate.
    Zamboni R; Gauthier-Manuel L; Zaltron A; Lucchetti L; Chauvet M; Sada C
    Opt Express; 2023 Aug; 31(17):28423-28436. PubMed ID: 37710896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opto-Microfluidic Integration of the Bradford Protein Assay in Lithium Niobate Lab-on-a-Chip.
    Zanini L; Zaltron A; Turato E; Zamboni R; Sada C
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidic platform using liquid crystals in lithium niobate microchannel.
    Bonfadini S; Ciciulla F; Criante L; Zaltron A; Simoni F; Reshetnyak V; Lucchetti L
    Sci Rep; 2019 Jan; 9(1):1062. PubMed ID: 30705302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Channel Waveguides in Lithium Niobate and Lithium Tantalate.
    Lu Y; Johnston B; Dekker P; Withford MJ; Dawes JM
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32867367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time precise microfluidic droplets label-sequencing combined in a velocity detection sensor.
    Zamboni R; Zaltron A; Chauvet M; Sada C
    Sci Rep; 2021 Sep; 11(1):17987. PubMed ID: 34504237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A guiding light: spectroscopy on digital microfluidic devices using in-plane optical fibre waveguides.
    Choi K; Mudrik JM; Wheeler AR
    Anal Bioanal Chem; 2015 Sep; 407(24):7467-75. PubMed ID: 26232932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Portable 'Plug-and-Play' Fibre Optic Sensor for In-Situ Measurements of pH Values for Microfluidic Applications.
    Kumar R; Nguyen H; Rente B; Tan C; Sun T; Grattan KTV
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices.
    Mousavi Shaegh SA; De Ferrari F; Zhang YS; Nabavinia M; Binth Mohammad N; Ryan J; Pourmand A; Laukaitis E; Banan Sadeghian R; Nadhman A; Shin SR; Nezhad AS; Khademhosseini A; Dokmeci MR
    Biomicrofluidics; 2016 Jul; 10(4):044111. PubMed ID: 27648113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and Analysis of an Opto-Fluidic Sensor for Lab-on-a-Chip Applications.
    Muniswamy V; Bangalore Muniraju C; Kumar Pattnaik P; Krishnaswamy N
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfabricated polymer analysis chip for optical detection.
    Fleger M; Siepe D; Neyer A
    IEE Proc Nanobiotechnol; 2004 Aug; 151(4):159-61. PubMed ID: 16475861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength-Sensitive Superconducting Single-Photon Detectors on Thin Film Lithium Niobate Waveguides.
    Prencipe A; Gyger S; Baghban MA; Zichi J; Zeuner KD; Lettner T; Schweickert L; Steinhauer S; Elshaari AW; Gallo K; Zwiller V
    Nano Lett; 2023 Nov; 23(21):9748-9752. PubMed ID: 37871304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lab-on-a-chip with integrated optical transducers.
    Balslev S; Jorgensen AM; Bilenberg B; Mogensen KB; Snakenborg D; Geschke O; Kutter JP; Kristensen A
    Lab Chip; 2006 Feb; 6(2):213-7. PubMed ID: 16450030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New optofluidic based lab-on-a-chip device for the real-time fluoride analysis.
    Bhat MP; Kurkuri M; Losic D; Kigga M; Altalhi T
    Anal Chim Acta; 2021 May; 1159():338439. PubMed ID: 33867030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides.
    Chen PK; Briggs I; Cui C; Zhang L; Shah M; Fan L
    Nat Nanotechnol; 2024 Jan; 19(1):44-50. PubMed ID: 37884657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence.
    Tahirbegi IB; Ehgartner J; Sulzer P; Zieger S; Kasjanow A; Paradiso M; Strobl M; Bouwes D; Mayr T
    Biosens Bioelectron; 2017 Feb; 88():188-195. PubMed ID: 27523821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cofabrication: a strategy for building multicomponent microsystems.
    Siegel AC; Tang SK; Nijhuis CA; Hashimoto M; Phillips ST; Dickey MD; Whitesides GM
    Acc Chem Res; 2010 Apr; 43(4):518-28. PubMed ID: 20088528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabrication and applications of opto-microfluidic sensors.
    Zhang D; Men L; Chen Q
    Sensors (Basel); 2011; 11(5):5360-82. PubMed ID: 22163904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A design method of lithium niobate on insulator ridge waveguides without leakage loss.
    Saitoh E; Kawaguchi Y; Saitoh K; Koshiba M
    Opt Express; 2011 Aug; 19(17):15833-42. PubMed ID: 21934946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous Polarization Reversal Induced by Proton Exchange in Z-Cut Lithium Niobate α-Phase Channel Waveguides.
    Rambu AP; Tiron V; Oniciuc E; Tascu S
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.