These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32961749)

  • 41. RBRDetector: improved prediction of binding residues on RNA-binding protein structures using complementary feature- and template-based strategies.
    Yang XX; Deng ZL; Liu R
    Proteins; 2014 Oct; 82(10):2455-71. PubMed ID: 24854765
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Circ-LocNet: A Computational Framework for Circular RNA Sub-Cellular Localization Prediction.
    Asim MN; Ibrahim MA; Imran Malik M; Dengel A; Ahmed S
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897818
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computational Prediction of RNA-Protein Interactions.
    Mann CM; Muppirala UK; Dobbs D
    Methods Mol Biol; 2017; 1543():169-185. PubMed ID: 28349426
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computational methods for prediction of protein-RNA interactions.
    Puton T; Kozlowski L; Tuszynska I; Rother K; Bujnicki JM
    J Struct Biol; 2012 Sep; 179(3):261-8. PubMed ID: 22019768
    [TBL] [Abstract][Full Text] [Related]  

  • 45. iDRBP-ECHF: Identifying DNA- and RNA-binding proteins based on extensible cubic hybrid framework.
    Feng J; Wang N; Zhang J; Liu B
    Comput Biol Med; 2022 Oct; 149():105940. PubMed ID: 36044786
    [TBL] [Abstract][Full Text] [Related]  

  • 46. BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences.
    Wang L; Brown SJ
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W243-8. PubMed ID: 16845003
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Discovering sequence and structure landscapes in RNA interaction motifs.
    Adinolfi M; Pietrosanto M; Parca L; Ausiello G; Ferrè F; Helmer-Citterich M
    Nucleic Acids Res; 2019 Jun; 47(10):4958-4969. PubMed ID: 31162604
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of protein-binding residues: dichotomy of sequence-based methods developed using structured complexes versus disordered proteins.
    Zhang J; Ghadermarzi S; Kurgan L
    Bioinformatics; 2020 Sep; 36(18):4729-4738. PubMed ID: 32860044
    [TBL] [Abstract][Full Text] [Related]  

  • 49. De-novo protein function prediction using DNA binding and RNA binding proteins as a test case.
    Peled S; Leiderman O; Charar R; Efroni G; Shav-Tal Y; Ofran Y
    Nat Commun; 2016 Nov; 7():13424. PubMed ID: 27869118
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RNA-binding residues prediction using structural features.
    Ren H; Shen Y
    BMC Bioinformatics; 2015 Aug; 16():249. PubMed ID: 26254826
    [TBL] [Abstract][Full Text] [Related]  

  • 51. iDRBP_MMC: Identifying DNA-Binding Proteins and RNA-Binding Proteins Based on Multi-Label Learning Model and Motif-Based Convolutional Neural Network.
    Zhang J; Chen Q; Liu B
    J Mol Biol; 2020 Nov; 432(22):5860-5875. PubMed ID: 32920048
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Solution structure of protein SRP19 of Archaeoglobus fulgidus signal recognition particle.
    Pakhomova ON; Deep S; Huang Q; Zwieb C; Hinck AP
    J Mol Biol; 2002 Mar; 317(1):145-58. PubMed ID: 11916385
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.
    Schlundt A; Tants JN; Sattler M
    Methods; 2017 Apr; 118-119():119-136. PubMed ID: 28315749
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PiRaNhA: a server for the computational prediction of RNA-binding residues in protein sequences.
    Murakami Y; Spriggs RV; Nakamura H; Jones S
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W412-6. PubMed ID: 20507911
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of RNA-binding proteins by voting systems.
    Peng CR; Liu L; Niu B; Lv YL; Li MJ; Yuan YL; Zhu YB; Lu WC; Cai YD
    J Biomed Biotechnol; 2011; 2011():506205. PubMed ID: 21826121
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Individually double minimum-distance definition of protein-RNA binding residues and application to structure-based prediction.
    Hu W; Qin L; Li M; Pu X; Guo Y
    J Comput Aided Mol Des; 2018 Dec; 32(12):1363-1373. PubMed ID: 30478757
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score.
    Miao Z; Westhof E
    Nucleic Acids Res; 2015 Jun; 43(11):5340-51. PubMed ID: 25940624
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improve the prediction of RNA-binding residues using structural neighbours.
    Li Q; Cao Z; Liu H
    Protein Pept Lett; 2010 Mar; 17(3):287-96. PubMed ID: 19508202
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploiting structural and topological information to improve prediction of RNA-protein binding sites.
    Maetschke SR; Yuan Z
    BMC Bioinformatics; 2009 Oct; 10():341. PubMed ID: 19835626
    [TBL] [Abstract][Full Text] [Related]  

  • 60. SNB-PSSM: A spatial neighbor-based PSSM used for protein-RNA binding site prediction.
    Liu Y; Gong W; Yang Z; Li C
    J Mol Recognit; 2021 Jun; 34(6):e2887. PubMed ID: 33442949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.