These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32961804)

  • 1. Starch-Based Aerogels Obtained via Solvent-Induced Gelation.
    Dogenski M; Gurikov P; Baudron V; Oliveira JV; Smirnova I; Ferreira SRS
    Gels; 2020 Sep; 6(3):. PubMed ID: 32961804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superinsulating Polyisocyanate Based Aerogels: A Targeted Search for the Optimum Solvent System.
    Zhu Z; Snellings GMBF; Koebel MM; Malfait WJ
    ACS Appl Mater Interfaces; 2017 May; 9(21):18222-18230. PubMed ID: 28481507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of nanoporous aerogels from wheat starch.
    Ubeyitogullari A; Ciftci ON
    Carbohydr Polym; 2016 Aug; 147():125-132. PubMed ID: 27178916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Morphology of Poly(ether ether ketone) Aerogels.
    Talley SJ; Vivod SL; Nguyen BA; Meador MAB; Radulescu A; Moore RB
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31508-31519. PubMed ID: 31379150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of solubility parameters in 1,3:2,4-bis(3,4-dimethylbenzylidene)sorbitol organogel in binary organic mixtures.
    Shen H; Niu L; Fan K; Li J; Guan X; Song J
    Langmuir; 2014 Aug; 30(30):9176-82. PubMed ID: 25019199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing dual nano/macroporous starch bioaerogels via emulsion templating and supercritical carbon dioxide drying.
    Alavi F; Ciftci ON
    Carbohydr Polym; 2022 Sep; 292():119607. PubMed ID: 35725150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials.
    Druel L; Bardl R; Vorwerg W; Budtova T
    Biomacromolecules; 2017 Dec; 18(12):4232-4239. PubMed ID: 29068674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of multicyclic β-carotene impregnation into corn starch aerogels via supercritical CO
    Hatami T; Jarles Santos de Araújo E; Luiz Baião Dias A; Helena Innocentini Mei L; Martínez J
    Food Res Int; 2024 Feb; 178():114002. PubMed ID: 38309888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro digestion of starch and protein aerogels generated from defatted rice bran via supercritical carbon dioxide drying.
    Kaur S; Ubeyitogullari A
    Food Chem; 2024 Oct; 455():139833. PubMed ID: 38833864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1,3:2,4-dibenzylidene sorbitol as the gelator.
    Lan Y; Corradini MG; Liu X; May TE; Borondics F; Weiss RG; Rogers MA
    Langmuir; 2014 Dec; 30(47):14128-42. PubMed ID: 24849281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyaluronic Acid Aerogels Made Via Freeze-Thaw-Induced Gelation.
    Legay L; Budtova T; Buwalda S
    Biomacromolecules; 2023 Oct; 24(10):4502-4509. PubMed ID: 37071924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Modulus, Strut-like poly(ether ether ketone) Aerogels Produced from a Benign Solvent.
    Spiering GA; Godshall GF; Moore RB
    Gels; 2024 Apr; 10(4):. PubMed ID: 38667702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical impregnation of starch aerogels with quercetin: Fungistatic effect and release modelling with a compartmental model.
    Mottola S; Iannone G; Giordano M; González-Garcinuño Á; Jiménez A; Tabernero A; Martín Del Valle E; De Marco I
    Int J Biol Macromol; 2023 Dec; 253(Pt 6):127406. PubMed ID: 37832612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the morphology and properties of starch aerogels and cryogels via starch source and process parameter.
    Zou F; Budtova T
    Carbohydr Polym; 2021 Mar; 255():117344. PubMed ID: 33436187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rice starch, amylopectin, and amylose: molecular weight and solubility in dimethyl sulfoxide-based solvents.
    Zhong F; Yokoyama W; Wang Q; Shoemaker CF
    J Agric Food Chem; 2006 Mar; 54(6):2320-6. PubMed ID: 16536614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Porous Networks in Polyimide Aerogels for Airborne Nanoparticle Filtration.
    Zhai C; Jana SC
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30074-30082. PubMed ID: 28806054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into organogelation and its kinetics from Hansen solubility parameters. Toward a priori predictions of molecular gelation.
    Diehn KK; Oh H; Hashemipour R; Weiss RG; Raghavan SR
    Soft Matter; 2014 Apr; 10(15):2632-40. PubMed ID: 24647411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Aerogels, Cryogels and Xerogels of Alginate: Effect of Molecular Weight, Gelation Conditions and Drying Method on Particles' Micromeritics.
    Rodríguez-Dorado R; López-Iglesias C; García-González CA; Auriemma G; Aquino RP; Del Gaudio P
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30884869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Gelation Techniques for the Fabrication of Cellulose Aerogels.
    Menshutina N; Fedotova O; Trofimova K; Tsygankov P
    Gels; 2023 Nov; 9(12):. PubMed ID: 38131905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of a chiral lipid gelator controlled by solvent and speed of gelation.
    Xue P; Lu R; Yang X; Zhao L; Xu D; Liu Y; Zhang H; Nomoto H; Takafuji M; Ihara H
    Chemistry; 2009 Sep; 15(38):9824-35. PubMed ID: 19681069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.