These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 32961813)

  • 1. Differential Gene Expression with an Emphasis on Floral Organ Size Differences in Natural and Synthetic Polyploids of
    Landis JB; Kurti A; Lawhorn AJ; Litt A; McCarthy EW
    Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32961813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early consequences of allopolyploidy alter floral evolution in Nicotiana (Solanaceae).
    McCarthy EW; Landis JB; Kurti A; Lawhorn AJ; Chase MW; Knapp S; Le Comber SC; Leitch AR; Litt A
    BMC Plant Biol; 2019 Apr; 19(1):162. PubMed ID: 31029077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgressive phenotypes and generalist pollination in the floral evolution of Nicotiana polyploids.
    McCarthy EW; Chase MW; Knapp S; Litt A; Leitch AR; Le Comber SC
    Nat Plants; 2016 Aug; 2():16119. PubMed ID: 27501400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae).
    McCarthy EW; Arnold SE; Chittka L; Le Comber SC; Verity R; Dodsworth S; Knapp S; Kelly LJ; Chase MW; Baldwin IT; Kovařík A; Mhiri C; Taylor L; Leitch AR
    Ann Bot; 2015 Jun; 115(7):1117-31. PubMed ID: 25979919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inflorescence architecture: the transition from branches to flowers.
    Hake S
    Curr Biol; 2008 Dec; 18(23):R1106-8. PubMed ID: 19081048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PLANT POLYPLOIDY AND POLLINATION: FLORAL TRAITS AND INSECT VISITS TO DIPLOID AND TETRAPLOID HEUCHERA GROSSULARIIFOLIA.
    Segraves KA; Thompson JN
    Evolution; 1999 Aug; 53(4):1114-1127. PubMed ID: 28565509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergences of MPF2-like MADS-domain proteins have an association with the evolution of the inflated calyx syndrome within Solanaceae.
    Zhang J; Khan MR; Tian Y; Li Z; Riss S; He C
    Planta; 2012 Oct; 236(4):1247-60. PubMed ID: 22711285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae).
    Leitch IJ; Hanson L; Lim KY; Kovarik A; Chase MW; Clarkson JJ; Leitch AR
    Ann Bot; 2008 Apr; 101(6):805-14. PubMed ID: 18222910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Related allopolyploids display distinct floral pigment profiles and transgressive pigments.
    McCarthy EW; Berardi AE; Smith SD; Litt A
    Am J Bot; 2017 Jan; 104(1):92-101. PubMed ID: 28057690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flower Development in the Solanaceae.
    Monniaux M; Vandenbussche M
    Methods Mol Biol; 2023; 2686():39-58. PubMed ID: 37540353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraspecific variation in gender strategies in Lycium (Solanaceae): associations with ploidy and changes in floral form following the evolution of gender dimorphism.
    Blank CM; Levin RA; Miller JS
    Am J Bot; 2014 Dec; 101(12):2160-8. PubMed ID: 25480712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative transcriptomic analysis of the evolution and development of flower size in Saltugilia (Polemoniaceae).
    Landis JB; Soltis DE; Soltis PS
    BMC Genomics; 2017 Jun; 18(1):475. PubMed ID: 28645249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome-wide mining of the differentially expressed transcripts for natural variation of floral organ size in Physalis philadelphica.
    Wang L; Li Z; He C
    J Exp Bot; 2012 Nov; 63(18):6457-65. PubMed ID: 23081983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like peptides and HAE (HAESA)-like receptors regulate corolla abscission in Nicotiana benthamiana flowers.
    Ventimilla D; Velázquez K; Ruiz-Ruiz S; Terol J; Pérez-Amador MA; Vives MC; Guerri J; Talon M; Tadeo FR
    BMC Plant Biol; 2021 May; 21(1):226. PubMed ID: 34020584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic basis for a rare floral mutant in an Andean species of Solanaceae.
    Coburn RA; Griffin RH; Smith SD
    Am J Bot; 2015 Feb; 102(2):264-72. PubMed ID: 25667079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics Reveal the Profiles of Color Change in
    Li M; Sun Y; Lu X; Debnath B; Mitra S; Qiu D
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018626
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparative evidence for the correlated evolution of polyploidy and self-compatibility in Solanaceae.
    Robertson K; Goldberg EE; Igić B
    Evolution; 2011 Jan; 65(1):139-55. PubMed ID: 20722729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification.
    Yockteng R; Almeida AM; Morioka K; Alvarez-Buylla ER; Specht CD
    Mol Biol Evol; 2013 Nov; 30(11):2401-22. PubMed ID: 23938867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex evolution of novel red floral color in Petunia.
    Berardi AE; Esfeld K; Jäggi L; Mandel T; Cannarozzi GM; Kuhlemeier C
    Plant Cell; 2021 Aug; 33(7):2273-2295. PubMed ID: 33871652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of pollinator shifts in the floral diversification of Iochroma (Solanaceae).
    Smith SD; Ané C; Baum DA
    Evolution; 2008 Apr; 62(4):793-806. PubMed ID: 18208567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.