These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 32961823)
21. Simulation and practice of particle inertial focusing in 3D-printed serpentine microfluidic chips via commercial 3D-printers. Yin P; Zhao L; Chen Z; Jiao Z; Shi H; Hu B; Yuan S; Tian J Soft Matter; 2020 Mar; 16(12):3096-3105. PubMed ID: 32149313 [TBL] [Abstract][Full Text] [Related]
22. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips. Kotz F; Helmer D; Rapp BE Adv Biochem Eng Biotechnol; 2022; 179():37-66. PubMed ID: 32797271 [TBL] [Abstract][Full Text] [Related]
23. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips. Mi S; Du Z; Xu Y; Sun W J Mater Chem B; 2018 Oct; 6(39):6191-6206. PubMed ID: 32254609 [TBL] [Abstract][Full Text] [Related]
24. Fabrication of PMMA microfluidic chips using disposable agar hydrogel templates. Yao X; Chen Z; Chen G Electrophoresis; 2009 Dec; 30(24):4225-9. PubMed ID: 20013907 [TBL] [Abstract][Full Text] [Related]
25. Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations. Ballacchino G; Weaver E; Mathew E; Dorati R; Genta I; Conti B; Lamprou DA Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360832 [TBL] [Abstract][Full Text] [Related]
26. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867 [TBL] [Abstract][Full Text] [Related]
27. 3D Printing of Individualized Microfluidic Chips with DLP-Based Printer. Qiu J; Li J; Guo Z; Zhang Y; Nie B; Qi G; Zhang X; Zhang J; Wei R Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959581 [TBL] [Abstract][Full Text] [Related]
28. Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices. Quero RF; Domingos da Silveira G; Fracassi da Silva JA; Jesus DP Lab Chip; 2021 Sep; 21(19):3715-3729. PubMed ID: 34355724 [TBL] [Abstract][Full Text] [Related]
29. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system. Riester O; Laufer S; Deigner HP J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530 [TBL] [Abstract][Full Text] [Related]
30. A rapid prototyping method for polymer microfluidics with fixed aspect ratio and 3D tapered channels. Browne AW; Rust MJ; Jung W; Lee SH; Ahn CH Lab Chip; 2009 Oct; 9(20):2941-6. PubMed ID: 19789747 [TBL] [Abstract][Full Text] [Related]
31. Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D Printing. Bardot M; Schulz MD Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33371307 [TBL] [Abstract][Full Text] [Related]
32. Using Printing Orientation for Tuning Fluidic Behavior in Microfluidic Chips Made by Fused Deposition Modeling 3D Printing. Li F; Macdonald NP; Guijt RM; Breadmore MC Anal Chem; 2017 Dec; 89(23):12805-12811. PubMed ID: 29048159 [TBL] [Abstract][Full Text] [Related]
33. Exploiting Partial Solubility in Partially Fluorinated Thermoplastic Blends to Improve Adhesion during Fused Deposition Modeling. Saldaña-Baqué P; Strutton JW; Shankar R; Morgan SE; McCollum JM Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431544 [TBL] [Abstract][Full Text] [Related]
37. Dual Sacrificial Molding: Fabricating 3D Microchannels with Overhang and Helical Features. Goh WH; Hashimoto M Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424456 [TBL] [Abstract][Full Text] [Related]
38. Research of TPU Materials for 3D Printing Aiming at Non-Pneumatic Tires by FDM Method. Wang J; Yang B; Lin X; Gao L; Liu T; Lu Y; Wang R Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33120954 [TBL] [Abstract][Full Text] [Related]