These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 32961823)

  • 41. In silico design and 3D printing of microfluidic chips for the preparation of size-controllable siRNA nanocomplexes.
    Li Y; Bøtker J; Rantanen J; Yang M; Bohr A
    Int J Pharm; 2020 Jun; 583():119388. PubMed ID: 32376446
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A combined 3D printing/CNC micro-milling method to fabricate a large-scale microfluidic device with the small size 3D architectures: an application for tumor spheroid production.
    Behroodi E; Latifi H; Bagheri Z; Ermis E; Roshani S; Salehi Moghaddam M
    Sci Rep; 2020 Dec; 10(1):22171. PubMed ID: 33335148
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microfabrication of Nonplanar Polymeric Microfluidics.
    Chen PC; Lee CY; Duong LH
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424424
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabricating Microstructures on Glass for Microfluidic Chips by Glass Molding Process.
    Wang T; Chen J; Zhou T; Song L
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424202
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Embedding objects during 3D printing to add new functionalities.
    Yuen PK
    Biomicrofluidics; 2016 Jul; 10(4):044104. PubMed ID: 27478528
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphology and Mechanical Properties of 3D Printed Wood Fiber/Polylactic Acid Composite Parts Using Fused Deposition Modeling (FDM): The Effects of Printing Speed.
    Yang TC; Yeh CH
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32545359
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The manufacturing of 3D-printed microfluidic chips to analyse the effect upon particle size during the synthesis of lipid nanoparticles.
    Weaver E; Mathew E; Caldwell J; Hooker A; Uddin S; Lamprou DA
    J Pharm Pharmacol; 2023 Feb; 75(2):245-252. PubMed ID: 36453867
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 3D printing of surgical instruments for long-duration space missions.
    Wong JY; Pfahnl AC
    Aviat Space Environ Med; 2014 Jul; 85(7):758-63. PubMed ID: 25022166
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid prototyping of microfluidic chips enabling controlled biotechnology applications in microspace.
    Garmasukis R; Hackl C; Charvat A; Mayr SG; Abel B
    Curr Opin Biotechnol; 2023 Jun; 81():102948. PubMed ID: 37163825
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery.
    Tan DK; Maniruzzaman M; Nokhodchi A
    Pharmaceutics; 2018 Oct; 10(4):. PubMed ID: 30356002
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering of Removing Sacrificial Materials in 3D-Printed Microfluidics.
    Yin P; Hu B; Yi L; Xiao C; Cao X; Zhao L; Shi H
    Micromachines (Basel); 2018 Jun; 9(7):. PubMed ID: 30424260
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Topographical Vacuum Sealing of 3D-Printed Multiplanar Microfluidic Structures.
    Heidt B; Rogosic R; Leoné N; Brás EJS; Cleij TJ; Harings JAW; Diliën H; Eersels K; van Grinsven B
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677351
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling.
    Fafenrot S; Grimmelsmann N; Wortmann M; Ehrmann A
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 29048347
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation and Characterization of Poly(butylene succinate)/Polylactide Blends for Fused Deposition Modeling 3D Printing.
    Ou-Yang Q; Guo B; Xu J
    ACS Omega; 2018 Oct; 3(10):14309-14317. PubMed ID: 31458121
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electroosmotic flow in fused deposition modeling (FDM) 3D-printed microchannels.
    Barbosa FHB; Quero RF; Rocha KN; Costa SC; de Jesus DP
    Electrophoresis; 2023 Mar; 44(5-6):558-562. PubMed ID: 36495094
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel Three-Dimensional-Printing Strategy Based on Dynamic Urea Bonds for Isotropy and Mechanical Robustness of Large-Scale Printed Products.
    Wang J; Hu S; Yang B; Jin G; Zhou X; Lin X; Wang R; Lu Y; Zhang L
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1994-2005. PubMed ID: 34963290
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D printed oral theophylline doses with innovative 'radiator-like' design: Impact of polyethylene oxide (PEO) molecular weight.
    Isreb A; Baj K; Wojsz M; Isreb M; Peak M; Alhnan MA
    Int J Pharm; 2019 Jun; 564():98-105. PubMed ID: 30974194
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D free-assembly modular microfluidics inspired by movable type printing.
    Huang S; Wu J; Zheng L; Long Y; Chen J; Li J; Dai B; Lin F; Zhuang S; Zhang D
    Microsyst Nanoeng; 2023; 9():111. PubMed ID: 37705925
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rapid Prototyping of Thermoplastic Microfluidic Devices.
    Novak R; Ng CF; Ingber DE
    Methods Mol Biol; 2018; 1771():161-170. PubMed ID: 29633212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.