These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 32962396)
1. Multi-carrier processes in halogenated Si nanocrystals. Derbenyova NV; Burdov VA J Chem Phys; 2020 Sep; 153(11):114304. PubMed ID: 32962396 [TBL] [Abstract][Full Text] [Related]
2. Effects of surface halogenation on exciton relaxation in Si crystallites: prospects for photovoltaics. Derbenyova NV; Shvetsov AE; Konakov AA; Burdov VA Phys Chem Chem Phys; 2019 Oct; 21(37):20693-20705. PubMed ID: 31508623 [TBL] [Abstract][Full Text] [Related]
3. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals. Kanemitsu Y Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584 [TBL] [Abstract][Full Text] [Related]
4. Symmetric band structures and asymmetric ultrafast electron and hole relaxations in silicon and germanium quantum dots: time-domain ab initio simulation. Hyeon-Deuk K; Madrid AB; Prezhdo OV Dalton Trans; 2009 Dec; (45):10069-77. PubMed ID: 19904435 [TBL] [Abstract][Full Text] [Related]
5. Effects of surface-passivating ligands and ultrasmall CdSe nanocrystal size on the delocalization of exciton confinement. Teunis MB; Dolai S; Sardar R Langmuir; 2014 Jul; 30(26):7851-8. PubMed ID: 24926916 [TBL] [Abstract][Full Text] [Related]
6. Core and valence exciton formation in x-ray absorption, x-ray emission and x-ray excited optical luminescence from passivated Si nanocrystals at the Si L(2,3) edge. Siller L; Krishnamurthy S; Kjeldgaard L; Horrocks BR; Chao Y; Houlton A; Chakraborty AK; Hunt MR J Phys Condens Matter; 2009 Mar; 21(9):095005. PubMed ID: 21817378 [TBL] [Abstract][Full Text] [Related]
7. Surface modification of chlorine-passivated silicon nanocrystals. Wang R; Pi X; Yang D Phys Chem Chem Phys; 2013 Feb; 15(6):1815-20. PubMed ID: 23287967 [TBL] [Abstract][Full Text] [Related]
8. Red-shifted carrier multiplication energy threshold and exciton recycling mechanisms in strongly interacting silicon nanocrystals. Marri I; Govoni M; Ossicini S J Am Chem Soc; 2014 Sep; 136(38):13257-66. PubMed ID: 25092549 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates. Miller JB; Dandu N; Velizhanin KA; Anthony RJ; Kortshagen UR; Kroll DM; Kilina S; Hobbie EK ACS Nano; 2015 Oct; 9(10):9772-82. PubMed ID: 26348831 [TBL] [Abstract][Full Text] [Related]
10. Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation. Wang BC; Chou YM; Deng JP; Dung YT J Phys Chem A; 2008 Jul; 112(28):6351-7. PubMed ID: 18570356 [TBL] [Abstract][Full Text] [Related]
11. Bifunctional Hybrid a-SiO Gao M; Chen D; Han B; Song W; Zhou M; Song X; Xu F; Zhao L; Li Y; Ma Z ACS Appl Mater Interfaces; 2018 Aug; 10(32):27454-27464. PubMed ID: 30040375 [TBL] [Abstract][Full Text] [Related]
12. Dopants Control Electron-Hole Recombination at Perovskite-TiO₂ Interfaces: Ab Initio Time-Domain Study. Long R; Prezhdo OV ACS Nano; 2015 Nov; 9(11):11143-55. PubMed ID: 26456384 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion. Klimov VI J Phys Chem B; 2006 Aug; 110(34):16827-45. PubMed ID: 16927970 [TBL] [Abstract][Full Text] [Related]
14. The role of surface defects in multi-exciton generation of lead selenide and silicon semiconductor quantum dots. Jaeger HM; Fischer S; Prezhdo OV J Chem Phys; 2012 Feb; 136(6):064701. PubMed ID: 22360209 [TBL] [Abstract][Full Text] [Related]
15. Multi-Carrier Generation in Organic-Passivated Black Silicon Solar Cells with Industrially Feasible Processes. Zhou X; Wan L; Li H; Yang X; Chen J; Ge K; Yan J; Zhang C; Gao Q; Zhang X; Guo J; Li F; Wang J; Song D; Wang S; Flavel BS; Chen J Small; 2023 Mar; 19(10):e2205848. PubMed ID: 36564362 [TBL] [Abstract][Full Text] [Related]
16. Electronic transport in phosphorus-doped silicon nanocrystal networks. Stegner AR; Pereira RN; Klein K; Lechner R; Dietmueller R; Brandt MS; Stutzmann M; Wiggers H Phys Rev Lett; 2008 Jan; 100(2):026803. PubMed ID: 18232904 [TBL] [Abstract][Full Text] [Related]
17. Defect-Induced Luminescence Quenching vs. Charge Carrier Generation of Phosphorus Incorporated in Silicon Nanocrystals as Function of Size. Hiller D; López-Vidrier J; Gutsch S; Zacharias M; Nomoto K; König D Sci Rep; 2017 Apr; 7(1):863. PubMed ID: 28408757 [TBL] [Abstract][Full Text] [Related]
18. Electronic structure of 1 to 2 nm diameter silicon core/shell nanocrystals: surface chemistry, optical spectra, charge transfer, and doping. Zhou Z; Friesner RA; Brus L J Am Chem Soc; 2003 Dec; 125(50):15599-607. PubMed ID: 14664607 [TBL] [Abstract][Full Text] [Related]
19. On the mechanism of silicon activation by halogen atoms. Soria FA; Patrito EM; Paredes-Olivera P Langmuir; 2011 Mar; 27(6):2613-24. PubMed ID: 21338085 [TBL] [Abstract][Full Text] [Related]
20. CsPbBr Liao JF; Xu YF; Wang XD; Chen HY; Kuang DB ACS Appl Mater Interfaces; 2018 Dec; 10(49):42301-42309. PubMed ID: 30427177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]