BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32963351)

  • 1. EGFR-upregulated LIFR promotes SUCLG2-dependent castration resistance and neuroendocrine differentiation of prostate cancer.
    Lin SR; Wen YC; Yeh HL; Jiang KC; Chen WH; Mokgautsi N; Huang J; Chen WY; Liu YN
    Oncogene; 2020 Oct; 39(44):6757-6775. PubMed ID: 32963351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer.
    Zou M; Toivanen R; Mitrofanova A; Floch N; Hayati S; Sun Y; Le Magnen C; Chester D; Mostaghel EA; Califano A; Rubin MA; Shen MM; Abate-Shen C
    Cancer Discov; 2017 Jul; 7(7):736-749. PubMed ID: 28411207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling.
    Luo J; Wang K; Yeh S; Sun Y; Liang L; Xiao Y; Xu W; Niu Y; Cheng L; Maity SN; Jiang R; Chang C
    Nat Commun; 2019 Jun; 10(1):2571. PubMed ID: 31189930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leukemia Inhibitory Factor Promotes Castration-resistant Prostate Cancer and Neuroendocrine Differentiation by Activated ZBTB46.
    Liu YN; Niu S; Chen WY; Zhang Q; Tao Y; Chen WH; Jiang KC; Chen X; Shi H; Liu A; Li J; Li Y; Lee YC; Zhang X; Huang J
    Clin Cancer Res; 2019 Jul; 25(13):4128-4140. PubMed ID: 30962287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical and molecular features of treatment-related neuroendocrine prostate cancer.
    Akamatsu S; Inoue T; Ogawa O; Gleave ME
    Int J Urol; 2018 Apr; 25(4):345-351. PubMed ID: 29396873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Androgen deprivation-induced ZBTB46-PTGS1 signaling promotes neuroendocrine differentiation of prostate cancer.
    Chen WY; Zeng T; Wen YC; Yeh HL; Jiang KC; Chen WH; Zhang Q; Huang J; Liu YN
    Cancer Lett; 2019 Jan; 440-441():35-46. PubMed ID: 30312731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer.
    Tiwari R; Manzar N; Bhatia V; Yadav A; Nengroo MA; Datta D; Carskadon S; Gupta N; Sigouros M; Khani F; Poutanen M; Zoubeidi A; Beltran H; Palanisamy N; Ateeq B
    Nat Commun; 2020 Jan; 11(1):384. PubMed ID: 31959826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription.
    Jia L; Wu D; Wang Y; You W; Wang Z; Xiao L; Cai G; Xu Z; Zou C; Wang F; Teoh JY; Ng CF; Yu S; Chan FL
    Oncogene; 2018 Jun; 37(25):3340-3355. PubMed ID: 29555975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PARP Inhibition Suppresses GR-MYCN-CDK5-RB1-E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer.
    Liu B; Li L; Yang G; Geng C; Luo Y; Wu W; Manyam GC; Korentzelos D; Park S; Tang Z; Wu C; Dong Z; Sigouros M; Sboner A; Beltran H; Chen Y; Corn PG; Tetzlaff MT; Troncoso P; Broom B; Thompson TC
    Clin Cancer Res; 2019 Nov; 25(22):6839-6851. PubMed ID: 31439587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis.
    Rotinen M; You S; Yang J; Coetzee SG; Reis-Sobreiro M; Huang WC; Huang F; Pan X; Yáñez A; Hazelett DJ; Chu CY; Steadman K; Morrissey CM; Nelson PS; Corey E; Chung LWK; Freedland SJ; Di Vizio D; Garraway IP; Murali R; Knudsen BS; Freeman MR
    Nat Med; 2018 Dec; 24(12):1887-1898. PubMed ID: 30478421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting PKLR/MYCN/ROMO1 signaling suppresses neuroendocrine differentiation of castration-resistant prostate cancer.
    Chen WY; Thuy Dung PV; Yeh HL; Chen WH; Jiang KC; Li HR; Chen ZQ; Hsiao M; Huang J; Wen YC; Liu YN
    Redox Biol; 2023 Jun; 62():102686. PubMed ID: 36963289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Galectin-3 Is Implicated in Tumor Progression and Resistance to Anti-androgen Drug Through Regulation of Androgen Receptor Signaling in Prostate Cancer.
    Dondoo TO; Fukumori T; Daizumoto K; Fukawa T; Kohzuki M; Kowada M; Kusuhara Y; Mori H; Nakatsuji H; Takahashi M; Kanayama HO
    Anticancer Res; 2017 Jan; 37(1):125-134. PubMed ID: 28011482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer.
    Hao J; Ci X; Xue H; Wu R; Dong X; Choi SYC; He H; Wang Y; Zhang F; Qu S; Zhang F; Haegert AM; Gout PW; Zoubeidi A; Collins C; Gleave ME; Lin D; Wang Y
    Eur Urol; 2018 Jun; 73(6):949-960. PubMed ID: 29544736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifocal Signal Modulation Therapy by Celecoxib: A Strategy for Managing Castration-Resistant Prostate Cancer.
    Benelli R; Barboro P; Costa D; Astigiano S; Barbieri O; Capaia M; Poggi A; Ferrari N
    Int J Mol Sci; 2019 Dec; 20(23):. PubMed ID: 31816863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RGS2 is prognostic for development of castration resistance and cancer-specific survival in castration-resistant prostate cancer.
    Linder A; Larsson K; Welén K; Damber JE
    Prostate; 2020 Aug; 80(11):799-810. PubMed ID: 32449815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer.
    Maina PK; Shao P; Liu Q; Fazli L; Tyler S; Nasir M; Dong X; Qi HH
    Oncotarget; 2016 Nov; 7(46):75585-75602. PubMed ID: 27689328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Annexin A1 promotes the nuclear localization of the epidermal growth factor receptor in castration-resistant prostate cancer.
    Mota STS; Vecchi L; Alves DA; Cordeiro AO; Guimarães GS; Campos-Fernández E; Maia YCP; Dornelas BC; Bezerra SM; de Andrade VP; Goulart LR; Araújo TG
    Int J Biochem Cell Biol; 2020 Oct; 127():105838. PubMed ID: 32858191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroendocrine differentiation in usual-type prostatic adenocarcinoma: Molecular characterization and clinical significance.
    Kaur H; Samarska I; Lu J; Faisal F; Maughan BL; Murali S; Asrani K; Alshalalfa M; Antonarakis ES; Epstein JI; Joshu CE; Schaeffer EM; Mosquera JM; Lotan TL
    Prostate; 2020 Sep; 80(12):1012-1023. PubMed ID: 32649013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function.
    Gui B; Gui F; Takai T; Feng C; Bai X; Fazli L; Dong X; Liu S; Zhang X; Zhang W; Kibel AS; Jia L
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14573-14582. PubMed ID: 31266892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CYB561 supports the neuroendocrine phenotype in castration-resistant prostate cancer.
    Azur RAG; Olarte KCV; Ybañez WS; Ocampo AMM; Bagamasbad PD
    PLoS One; 2024; 19(5):e0300413. PubMed ID: 38739593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.