These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32963551)

  • 21. Dynamic changes of epigenetic signatures during chondrogenic and adipogenic differentiation of mesenchymal stem cells.
    Saidi N; Ghalavand M; Hashemzadeh MS; Dorostkar R; Mohammadi H; Mahdian-Shakib A
    Biomed Pharmacother; 2017 May; 89():719-731. PubMed ID: 28273634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epigenetic modifications-insight into oligodendrocyte lineage progression, regeneration, and disease.
    Gregath A; Lu QR
    FEBS Lett; 2018 Apr; 592(7):1063-1078. PubMed ID: 29427507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of ATP-dependent chromatin remodelers: accelerators/brakes, anchors and sensors.
    Paul S; Bartholomew B
    Biochem Soc Trans; 2018 Dec; 46(6):1423-1430. PubMed ID: 30467122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanobiology of mesenchymal stem cells: Perspective into mechanical induction of MSC fate.
    Hao J; Zhang Y; Jing D; Shen Y; Tang G; Huang S; Zhao Z
    Acta Biomater; 2015 Jul; 20():1-9. PubMed ID: 25871537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling.
    He X; Wang H; Jin T; Xu Y; Mei L; Yang J
    PLoS One; 2016; 11(3):e0149876. PubMed ID: 26930594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromatin remodeling and epigenetic regulation of oligodendrocyte myelination and myelin repair.
    Koreman E; Sun X; Lu QR
    Mol Cell Neurosci; 2018 Mar; 87():18-26. PubMed ID: 29254827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells.
    Boland GM; Perkins G; Hall DJ; Tuan RS
    J Cell Biochem; 2004 Dec; 93(6):1210-30. PubMed ID: 15486964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epigenetic approaches to regeneration of bone and cartilage from stem cells.
    Im GI; Shin KJ
    Expert Opin Biol Ther; 2015 Feb; 15(2):181-93. PubMed ID: 25283749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells.
    Greco SJ; Liu K; Rameshwar P
    Stem Cells; 2007 Dec; 25(12):3143-54. PubMed ID: 17761754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mesenchymal stem cells for bone gene therapy and tissue engineering.
    Pelled G; G T; Aslan H; Gazit Z; Gazit D
    Curr Pharm Des; 2002; 8(21):1917-28. PubMed ID: 12171527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of Plant Growth and Development: A Review From a Chromatin Remodeling Perspective.
    Ojolo SP; Cao S; Priyadarshani SVGN; Li W; Yan M; Aslam M; Zhao H; Qin Y
    Front Plant Sci; 2018; 9():1232. PubMed ID: 30186301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signal transduction pathways involved in the lineage-differentiation of NSCs: can the knowledge gained from blood be used in the brain?
    Mondal D; Pradhan L; LaRussa VF
    Cancer Invest; 2004; 22(6):925-43. PubMed ID: 15641490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ATP-dependent nucleosome remodeling complexes: enzymes tailored to deal with chromatin.
    Sif S
    J Cell Biochem; 2004 Apr; 91(6):1087-98. PubMed ID: 15048866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The SWI/SNF family of ATP-dependent chromatin remodelers: similar mechanisms for diverse functions.
    Wang W
    Curr Top Microbiol Immunol; 2003; 274():143-69. PubMed ID: 12596907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone Remodeling: Histone Modifications as Fate Determinants of Bone Cell Differentiation.
    Yi SJ; Lee H; Lee J; Lee K; Kim J; Kim Y; Park JI; Kim K
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31252653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tet-Mediated DNA Demethylation Is Required for SWI/SNF-Dependent Chromatin Remodeling and Histone-Modifying Activities That Trigger Expression of the Sp7 Osteoblast Master Gene during Mesenchymal Lineage Commitment.
    Sepulveda H; Villagra A; Montecino M
    Mol Cell Biol; 2017 Oct; 37(20):. PubMed ID: 28784721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Programming the genome in embryonic and somatic stem cells.
    Collas P; Noer A; Timoskainen S
    J Cell Mol Med; 2007; 11(4):602-20. PubMed ID: 17760828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integration of Signaling Pathways with the Epigenetic Machinery in the Maintenance of Stem Cells.
    Fagnocchi L; Mazzoleni S; Zippo A
    Stem Cells Int; 2016; 2016():8652748. PubMed ID: 26798364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA methyltransferases inhibitors effectively induce gene expression changes suggestive of cardiomyogenic differentiation of human amniotic fluid-derived mesenchymal stem cells via chromatin remodeling.
    Gasiūnienė M; Zentelytė A; Wojtas B; Baronaitė S; Krasovskaja N; Savickienė J; Gielniewski B; Kaminska B; Utkus A; Navakauskienė R
    J Tissue Eng Regen Med; 2019 Mar; 13(3):469-481. PubMed ID: 30637987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of Chromatin Modifications in Drosophila Germline Stem Cell Differentiation.
    Flora P; McCarthy A; Upadhyay M; Rangan P
    Results Probl Cell Differ; 2017; 59():1-30. PubMed ID: 28247044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.