These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32963881)

  • 1. Performance Optimization of Microvalves Based on a Microhole Array for Microfluidic Chips.
    Sun C; You H; Xie Y; Xu RX
    J Anal Methods Chem; 2020; 2020():8842890. PubMed ID: 32963881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A perforated microhole-based microfluidic device for improving sprouting angiogenesis
    Chen S; Zhang L; Zhao Y; Ke M; Li B; Chen L; Cai S
    Biomicrofluidics; 2017 Sep; 11(5):054111. PubMed ID: 29085522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape Optimization of a Microhole Surface for Control of Droplet Wettability via the Lattice Boltzmann Method and Response Surface Methodology.
    Yin B; Xu S; Yang S; Dong F
    Langmuir; 2021 Mar; 37(12):3620-3627. PubMed ID: 33721491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug permeability assay using microhole-trapped cells in a microfluidic device.
    Yeon JH; Park JK
    Anal Chem; 2009 Mar; 81(5):1944-51. PubMed ID: 19203200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design considerations for electrostatic microvalves with applications in poly(dimethylsiloxane)-based microfluidics.
    Desai AV; Tice JD; Apblett CA; Kenis PJ
    Lab Chip; 2012 Mar; 12(6):1078-88. PubMed ID: 22301791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic chips controlled with elastomeric microvalve arrays.
    Li N; Sip C; Folch A
    J Vis Exp; 2007; (8):296. PubMed ID: 18989408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Study on SPR Array Sensing Chip Integrated with Microvalves.
    Chen W; Wang P; Li B
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends.
    Zhang C; Xing D; Li Y
    Biotechnol Adv; 2007; 25(5):483-514. PubMed ID: 17601695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of an Anti-Reflective Microstructure on ZnS by Femtosecond Laser Bessel Beams.
    Li X; Li M; Liu H; Guo Y
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance multiplex microvalves fabrication and using for tumor cells staining on a microfluidic chip.
    Hong SL; Tang M; Chen Z; Ai Z; Liu F; Wang S; Zhang N; Liu K
    Biomed Microdevices; 2019 Sep; 21(4):87. PubMed ID: 31475308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a cellular multi-parameter analysis platform: fluorescence in situ hybridization (FISH) on microhole-array chips.
    Kurz CM; Moosdijk SV; Thielecke H; Velten T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8408-11. PubMed ID: 22256298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maskless 3D Ablation of Precise Microhole Structures in Plastics Using Femtosecond Laser Pulses.
    Liao C; Anderson W; Antaw F; Trau M
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4315-4323. PubMed ID: 29313352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoresponsive microvalve for remote actuation and flow control in microfluidic devices.
    Jadhav AD; Yan B; Luo RC; Wei L; Zhen X; Chen CH; Shi P
    Biomicrofluidics; 2015 May; 9(3):034114. PubMed ID: 26180571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Passive Valve with Ultra-Low Threshold Pressure for High-Throughput Liquid Delivery.
    Zhang X; Oseyemi AE
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfabricated in-channel structured polydimethylsiloxane microfluidic system for a lab-on-a-chip.
    Ra GS; Yoo JC; Kang CJ; Kim YS
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4588-92. PubMed ID: 19049064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices.
    Park JM; Cho YK; Lee BS; Lee JG; Ko C
    Lab Chip; 2007 May; 7(5):557-64. PubMed ID: 17476373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microvalve thickness and topography measurements in microfluidic devices by white-light confocal microscopy.
    Li S; Thorsen T; Xu Z; Fang ZP; Zhao J; Yoon SF
    Appl Opt; 2009 Sep; 48(27):5088-94. PubMed ID: 19767923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tribological Performance of Microhole-Textured Carbide Tool Filled with CaF₂.
    Song W; Wang S; Lu Y; Xia Z
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30205435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvalves based on ionic polymer-metal composites for microfluidic application.
    Yun JS; Yang KS; Choi NJ; Lee HK; Moon SE; Kim DH
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5975-9. PubMed ID: 22121642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid-Structure Interaction Analysis on Membrane Behavior of a Microfluidic Passive Valve.
    Lin ZH; Li XJ; Jin ZJ; Qian JY
    Membranes (Basel); 2020 Oct; 10(10):. PubMed ID: 33096936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.