These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 32964464)
1. Association between histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human colorectal cancer cells. Hossain S; Liu Z; Wood RJ J Sci Food Agric; 2021 Mar; 101(5):1833-1843. PubMed ID: 32964464 [TBL] [Abstract][Full Text] [Related]
2. Histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human breast cancer cells. Hossain S; Liu Z; Wood RJ J Food Biochem; 2020 Feb; 44(2):e13114. PubMed ID: 31846091 [TBL] [Abstract][Full Text] [Related]
3. A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Myzak MC; Karplus PA; Chung FL; Dashwood RH Cancer Res; 2004 Aug; 64(16):5767-74. PubMed ID: 15313918 [TBL] [Abstract][Full Text] [Related]
4. Heterocyclic Analogs of Sulforaphane Trigger DNA Damage and Impede DNA Repair in Colon Cancer Cells: Interplay of HATs and HDACs. Okonkwo A; Mitra J; Johnson GS; Li L; Dashwood WM; Hegde ML; Yue C; Dashwood RH; Rajendran P Mol Nutr Food Res; 2018 Sep; 62(18):e1800228. PubMed ID: 29924908 [TBL] [Abstract][Full Text] [Related]
5. Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly. Rajendran P; Delage B; Dashwood WM; Yu TW; Wuth B; Williams DE; Ho E; Dashwood RH Mol Cancer; 2011 May; 10():68. PubMed ID: 21624135 [TBL] [Abstract][Full Text] [Related]
6. HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Rajendran P; Kidane AI; Yu TW; Dashwood WM; Bisson WH; Löhr CV; Ho E; Williams DE; Dashwood RH Epigenetics; 2013 Jun; 8(6):612-23. PubMed ID: 23770684 [TBL] [Abstract][Full Text] [Related]
7. 1α,25-Dihydroxyvitamin D Ishizawa M; Akagi D; Yamamoto J; Makishima M J Steroid Biochem Mol Biol; 2017 Sep; 172():55-61. PubMed ID: 28578001 [TBL] [Abstract][Full Text] [Related]
8. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression. DeSmet ML; Fleet JC J Steroid Biochem Mol Biol; 2017 Oct; 173():194-201. PubMed ID: 28104492 [TBL] [Abstract][Full Text] [Related]
9. Distinct HDACs regulate the transcriptional response of human cyclin-dependent kinase inhibitor genes to Trichostatin A and 1alpha,25-dihydroxyvitamin D3. Malinen M; Saramäki A; Ropponen A; Degenhardt T; Väisänen S; Carlberg C Nucleic Acids Res; 2008 Jan; 36(1):121-32. PubMed ID: 17999998 [TBL] [Abstract][Full Text] [Related]
10. Sulforaphane suppresses in vitro and in vivo lung tumorigenesis through downregulation of HDAC activity. Jiang LL; Zhou SJ; Zhang XM; Chen HQ; Liu W Biomed Pharmacother; 2016 Mar; 78():74-80. PubMed ID: 26898427 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms for the Inhibition of Colon Cancer Cells by Sulforaphane through Epigenetic Modulation of MicroRNA-21 and Human Telomerase Reverse Transcriptase (hTERT) Down-regulation. Martin SL; Kala R; Tollefsbol TO Curr Cancer Drug Targets; 2018; 18(1):97-106. PubMed ID: 28176652 [TBL] [Abstract][Full Text] [Related]
12. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice. Chow EC; Quach HP; Vieth R; Pang KS Am J Physiol Endocrinol Metab; 2013 May; 304(9):E977-89. PubMed ID: 23482451 [TBL] [Abstract][Full Text] [Related]
13. Synergistic effects of a combination of dietary factors sulforaphane and (-) epigallocatechin-3-gallate in HT-29 AP-1 human colon carcinoma cells. Nair S; Hebbar V; Shen G; Gopalakrishnan A; Khor TO; Yu S; Xu C; Kong AN Pharm Res; 2008 Feb; 25(2):387-99. PubMed ID: 17657594 [TBL] [Abstract][Full Text] [Related]
14. The effect of differentiation on 1,25 dihydroxyvitamin D-mediated gene expression in the enterocyte-like cell line, Caco-2. Cui M; Klopot A; Jiang Y; Fleet JC J Cell Physiol; 2009 Jan; 218(1):113-21. PubMed ID: 18726998 [TBL] [Abstract][Full Text] [Related]
15. Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor. Claro da Silva T; Hiller C; Gai Z; Kullak-Ublick GA J Steroid Biochem Mol Biol; 2016 Oct; 163():77-87. PubMed ID: 27107558 [TBL] [Abstract][Full Text] [Related]
16. Sulforaphane attenuates cisplatin-induced hearing loss by inhibiting histone deacetylase expression. Wang J; Tian KY; Fang Y; Chang HM; Han YN; Chen FQ Int J Immunopathol Pharmacol; 2021; 35():20587384211034086. PubMed ID: 34344210 [TBL] [Abstract][Full Text] [Related]
17. Phorbol esters enhance 1α,25-dihydroxyvitamin D3-regulated 25-hydroxyvitamin D-24-hydroxylase (CYP24A1) gene expression through ERK-mediated phosphorylation of specific protein 3 (Sp3) in Caco-2 cells. Jiang Y; Fleet JC Mol Cell Endocrinol; 2012 Sep; 361(1-2):31-9. PubMed ID: 22871965 [TBL] [Abstract][Full Text] [Related]
18. Epigenetic weapons in plant-herbivore interactions: Sulforaphane disrupts histone deacetylases, gene expression, and larval development in Spodoptera exigua while the specialist feeder Trichoplusia ni is largely resistant to these effects. Somers DJ; Kushner DB; McKinnis AR; Mehmedovic D; Flame RS; Arnold TM PLoS One; 2023; 18(10):e0293075. PubMed ID: 37856454 [TBL] [Abstract][Full Text] [Related]
19. The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1,25-dihydroxyvitamin D3 in intestinal cells. Meyer MB; Watanuki M; Kim S; Shevde NK; Pike JW Mol Endocrinol; 2006 Jun; 20(6):1447-61. PubMed ID: 16574738 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes. Seuter S; Pehkonen P; Heikkinen S; Carlberg C Biochim Biophys Acta; 2013 Dec; 1829(12):1266-75. PubMed ID: 24185200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]