These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32964598)

  • 41. Molecular catch bonds and the anti-Hammond effect in polymer mechanochemistry.
    Konda SS; Brantley JN; Varghese BT; Wiggins KM; Bielawski CW; Makarov DE
    J Am Chem Soc; 2013 Aug; 135(34):12722-9. PubMed ID: 23905836
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanochemistry of Spiropyran under Internal Stresses of a Glassy Polymer.
    Janissen R; Filonenko GA
    J Am Chem Soc; 2022 Dec; 144(50):23198-23204. PubMed ID: 36509594
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heterolytic Bond Cleavage in a Scissile Triarylmethane Mechanophore.
    Hemmer JR; Rader C; Wilts BD; Weder C; Berrocal JA
    J Am Chem Soc; 2021 Nov; 143(45):18859-18863. PubMed ID: 34735137
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bicyclo[3.2.0]heptane mechanophores for the non-scissile and photochemically reversible generation of reactive bis-enones.
    Kean ZS; Black Ramirez AL; Yan Y; Craig SL
    J Am Chem Soc; 2012 Aug; 134(31):12939-42. PubMed ID: 22817476
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sterically controlled mechanochemistry under hydrostatic pressure.
    Yan H; Yang F; Pan D; Lin Y; Hohman JN; Solis-Ibarra D; Li FH; Dahl JEP; Carlson RMK; Tkachenko BA; Fokin AA; Schreiner PR; Galli G; Mao WL; Shen ZX; Melosh NA
    Nature; 2018 Feb; 554(7693):505-510. PubMed ID: 29469090
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials.
    Davis DA; Hamilton A; Yang J; Cremar LD; Van Gough D; Potisek SL; Ong MT; Braun PV; Martínez TJ; White SR; Moore JS; Sottos NR
    Nature; 2009 May; 459(7243):68-72. PubMed ID: 19424152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(6):993-1022. PubMed ID: 23730732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anthracene-based mechanophores for compression-activated fluorescence in polymeric networks.
    Kabb CP; O'Bryan CS; Morley CD; Angelini TE; Sumerlin BS
    Chem Sci; 2019 Sep; 10(33):7702-7708. PubMed ID: 31588318
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanochemistry of Cationic Cobaltocenium Mechanophore.
    Cha Y; Zhu T; Sha Y; Lin H; Hwang J; Seraydarian M; Craig SL; Tang C
    J Am Chem Soc; 2021 Aug; 143(30):11871-11878. PubMed ID: 34283587
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Release of Molecular Cargo from Polymer Systems by Mechanochemistry.
    Küng R; Göstl R; Schmidt BM
    Chemistry; 2022 Mar; 28(17):e202103860. PubMed ID: 34878679
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic Memory Effects in the Mechanochemistry of Cyclic Polymers.
    Lin Y; Zhang Y; Wang Z; Craig SL
    J Am Chem Soc; 2019 Jul; 141(28):10943-10947. PubMed ID: 31283207
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Competitive Activation Experiments Reveal Significantly Different Mechanochemical Reactivity of Furan-Maleimide and Anthracene-Maleimide Mechanophores.
    Luo SM; Barber RW; Overholts AC; Robb MJ
    ACS Polym Au; 2023 Apr; 3(2):202-208. PubMed ID: 37065719
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A quantitative quantum-chemical analysis tool for the distribution of mechanical force in molecules.
    Stauch T; Dreuw A
    J Chem Phys; 2014 Apr; 140(13):134107. PubMed ID: 24712780
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-modal mechanophores based on cinnamate dimers.
    Zhang H; Li X; Lin Y; Gao F; Tang Z; Su P; Zhang W; Xu Y; Weng W; Boulatov R
    Nat Commun; 2017 Oct; 8(1):1147. PubMed ID: 29079772
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrasound controlled mechanophore activation in hydrogels for cancer therapy.
    Kim G; Wu Q; Chu JL; Smith EJ; Oelze ML; Moore JS; Li KC
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046028
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Knots "Choke Off" Polymers upon Stretching.
    Stauch T; Dreuw A
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):811-4. PubMed ID: 26629964
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanical Reversibility of Strain-Promoted Azide-Alkyne Cycloaddition Reactions.
    Jacobs MJ; Schneider G; Blank KG
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2899-902. PubMed ID: 26806106
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Harnessing the Power of Force: Development of Mechanophores for Molecular Release.
    Versaw BA; Zeng T; Hu X; Robb MJ
    J Am Chem Soc; 2021 Dec; 143(51):21461-21473. PubMed ID: 34927426
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The mechanochemical production of phenyl cations through heterolytic bond scission.
    Shiraki T; Diesendruck CE; Moore JS
    Faraday Discuss; 2014; 170():385-94. PubMed ID: 25408164
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interfacial Force-Focusing Effect in Mechanophore-Linked Nanocomposites.
    Kim TA; Lamuta C; Kim H; Leal C; Sottos NR
    Adv Sci (Weinh); 2020 Apr; 7(7):1903464. PubMed ID: 32274322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.