These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32964623)

  • 1. Nanoengineered Organic Electrodes for Highly Durable and Ultrafast Cycling of Organic Sodium-Ion Batteries.
    Thangavel R; Moorthy M; Ganesan BK; Lee W; Yoon WS; Lee YS
    Small; 2020 Oct; 16(41):e2003688. PubMed ID: 32964623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly stable Na2/3 (Mn0.54 Ni0.13 Co0.13 )O2 cathode modified by atomic layer deposition for sodium-ion batteries.
    Kaliyappan K; Liu J; Lushington A; Li R; Sun X
    ChemSusChem; 2015 Aug; 8(15):2537-43. PubMed ID: 26119638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized atomic layer deposition of homogeneous, conductive Al
    Negi RS; Culver SP; Wiche M; Ahmed S; Volz K; Elm MT
    Phys Chem Chem Phys; 2021 Mar; 23(11):6725-6737. PubMed ID: 33710207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Conductive Inorganic Cathodes Promising High-Energy Organic Batteries.
    Mao M; Wang S; Lin Z; Liu T; Hu YS; Li H; Huang X; Chen L; Suo L
    Adv Mater; 2021 Feb; 33(8):e2005781. PubMed ID: 33470470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition.
    Zhao Y; Goncharova LV; Lushington A; Sun Q; Yadegari H; Wang B; Xiao W; Li R; Sun X
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28256756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the Cathode Electrolyte Interphase on P2-Na
    Alvarado J; Ma C; Wang S; Nguyen K; Kodur M; Meng YS
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26518-26530. PubMed ID: 28707882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Modification of Fe
    Deng X; Chen H; Wu X; Wang YX; Zhong F; Ai X; Yang H; Cao Y
    Small; 2020 May; 16(20):e2000745. PubMed ID: 32329571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can Metallic Sodium Electrodes Affect the Electrochemistry of Sodium-Ion Batteries? Reactivity Issues and Perspectives.
    Pfeifer K; Arnold S; Becherer J; Das C; Maibach J; Ehrenberg H; Dsoke S
    ChemSusChem; 2019 Jul; 12(14):3312-3319. PubMed ID: 31046192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Potassium-Tellurium Batteries Stabilized by Interface Engineering.
    Zhang Y; Zhu H; Freschi DJ; Liu J
    Small; 2022 Apr; 18(15):e2200085. PubMed ID: 35225427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Electrochemical Performance of Supercapacitors via Atomic Layer Deposition of ZnO on the Activated Carbon Electrode Material.
    Wu C; Zhang F; Xiao X; Chen J; Sun J; Gandla D; Ein-Eli Y; Tan DQ
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing high-rate and elevated-temperature performances of nano-sized and micron-sized LiMn2O4 in lithium-ion batteries with ultrathin surface coatings.
    Luan X; Guan D; Wang Y
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7113-20. PubMed ID: 23035441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Safety Symmetric Sodium-Ion Batteries Based on Nonflammable Phosphate Electrolyte and Double Na
    Liu X; Jiang X; Zhong F; Feng X; Chen W; Ai X; Yang H; Cao Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27833-27838. PubMed ID: 31287282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode.
    Kang C; Lee Y; Kim I; Hyun S; Lee TH; Yun S; Yoon WS; Moon Y; Lee J; Kim S; Lee HJ
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31018566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic Carbonyl Compounds for Sodium-Ion Batteries: Recent Progress and Future Perspectives.
    Wang HG; Zhang XB
    Chemistry; 2018 Dec; 24(69):18235-18245. PubMed ID: 30007002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable Quasi-Solid-State Aluminum Batteries.
    Huang Z; Song WL; Liu Y; Wang W; Wang M; Ge J; Jiao H; Jiao S
    Adv Mater; 2022 Feb; 34(8):e2104557. PubMed ID: 34877722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes.
    Wei S; Choudhury S; Tu Z; Zhang K; Archer LA
    Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ-Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries.
    Huang Y; Fang C; Zeng R; Liu Y; Zhang W; Wang Y; Liu Q; Huang Y
    ChemSusChem; 2017 Dec; 10(23):4704-4708. PubMed ID: 28891155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.