BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32964665)

  • 41. Shake flask methodology for assessing the influence of the maximum oxygen transfer capacity on 2,3-butanediol production.
    Heyman B; Lamm R; Tulke H; Regestein L; Büchs J
    Microb Cell Fact; 2019 May; 18(1):78. PubMed ID: 31053124
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol.
    Qiu Y; Zhang J; Li L; Wen Z; Nomura CT; Wu S; Chen S
    Biotechnol Biofuels; 2016; 9():117. PubMed ID: 27257436
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering.
    Ng CY; Jung MY; Lee J; Oh MK
    Microb Cell Fact; 2012 May; 11():68. PubMed ID: 22640729
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production.
    Lu P; Bai R; Gao T; Chen J; Jiang K; Zhu Y; Lu Y; Zhang S; Xu F; Zhao H
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):146. PubMed ID: 38240862
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced production of tetramethylpyrazine in Bacillus licheniformis BL1 by bdhA disruption and 2,3-butanediol supplementation.
    Meng W; Xiao D; Wang R
    World J Microbiol Biotechnol; 2016 Mar; 32(3):46. PubMed ID: 26873557
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic Engineering of
    Lü C; Ge Y; Cao M; Guo X; Liu P; Gao C; Xu P; Ma C
    Front Bioeng Biotechnol; 2020; 8():125. PubMed ID: 32154242
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering of the 2,3-butanediol pathway of Paenibacillus polymyxa DSM 365.
    Schilling C; Ciccone R; Sieber V; Schmid J
    Metab Eng; 2020 Sep; 61():381-388. PubMed ID: 32771627
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Establishment and application of multiplexed CRISPR interference system in Bacillus licheniformis.
    Zhan Y; Xu Y; Zheng P; He M; Sun S; Wang D; Cai D; Ma X; Chen S
    Appl Microbiol Biotechnol; 2020 Jan; 104(1):391-403. PubMed ID: 31745574
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae.
    Chen C; Wei D; Shi J; Wang M; Hao J
    Appl Microbiol Biotechnol; 2014 May; 98(10):4603-13. PubMed ID: 24535253
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient 2,3-butanediol production from whey powder using metabolically engineered Klebsiella oxytoca.
    Meng W; Zhang Y; Cao M; Zhang W; Lü C; Yang C; Gao C; Xu P; Ma C
    Microb Cell Fact; 2020 Aug; 19(1):162. PubMed ID: 32778112
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain.
    Li L; Li K; Wang K; Chen C; Gao C; Ma C; Xu P
    Bioresour Technol; 2014 Oct; 170():256-261. PubMed ID: 25151068
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of an industrial yeast strain for efficient production of 2,3-butanediol.
    Huo G; Foulquié-Moreno MR; Thevelein JM
    Microb Cell Fact; 2022 Sep; 21(1):199. PubMed ID: 36175998
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic Engineering of
    Liu Y; Cen X; Liu D; Chen Z
    ACS Synth Biol; 2021 Aug; 10(8):1946-1955. PubMed ID: 34264647
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism of 2,3-butanediol stereoisomers formation in a newly isolated Serratia sp. T241.
    Zhang L; Guo Z; Chen J; Xu Q; Lin H; Hu K; Guan X; Shen Y
    Sci Rep; 2016 Jan; 6():19257. PubMed ID: 26753612
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of pH and fermentation strategies on 2,3-butanediol production with an isolated Klebsiella sp. Zmd30 strain.
    Wong CL; Yen HW; Lin CL; Chang JS
    Bioresour Technol; 2014; 152():169-76. PubMed ID: 24291317
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbial Routes to (2R,3R)-2,3-Butanediol: Recent Advances and Future Prospects.
    Xie NZ; Chen XR; Wang QY; Chen D; Du QS; Zhou GP; Huang RB
    Curr Top Med Chem; 2017; 17(21):2433-2439. PubMed ID: 28474550
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increasing the bioflocculant production and identifying the effect of overexpressing epsB on the synthesis of polysaccharide and γ-PGA in Bacillus licheniformis.
    Liu P; Chen Z; Yang L; Li Q; He N
    Microb Cell Fact; 2017 Sep; 16(1):163. PubMed ID: 28950882
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Production of highly pure R,R-2,3-butanediol for biological plant growth promoting agent using carbon feeding control of Paenibacillus polymyxa MDBDO.
    Ju JH; Jo MH; Heo SY; Kim MS; Kim CH; Paul NC; Sang H; Oh BR
    Microb Cell Fact; 2023 Jul; 22(1):121. PubMed ID: 37407951
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimized expression and enhanced production of alkaline protease by genetically modified Bacillus licheniformis 2709.
    Zhou C; Zhou H; Li D; Zhang H; Wang H; Lu F
    Microb Cell Fact; 2020 Feb; 19(1):45. PubMed ID: 32093734
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.
    Jung MY; Ng CY; Song H; Lee J; Oh MK
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):461-9. PubMed ID: 22297429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.