These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 32965679)
1. The elucidation of phosphosugar stress response in Bacillus subtilis guides strain engineering for high N-acetylglucosamine production. Niu T; Lv X; Liu Y; Li J; Du G; Ledesma-Amaro R; Liu L Biotechnol Bioeng; 2021 Jan; 118(1):383-396. PubMed ID: 32965679 [TBL] [Abstract][Full Text] [Related]
2. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Liu Y; Zhu Y; Li J; Shin HD; Chen RR; Du G; Liu L; Chen J Metab Eng; 2014 May; 23():42-52. PubMed ID: 24560814 [TBL] [Abstract][Full Text] [Related]
3. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Liu Y; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J Metab Eng; 2013 Sep; 19():107-15. PubMed ID: 23876412 [TBL] [Abstract][Full Text] [Related]
4. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis. Gu Y; Deng J; Liu Y; Li J; Shin HD; Du G; Chen J; Liu L Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731580 [TBL] [Abstract][Full Text] [Related]
5. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis. Ma W; Liu Y; Lv X; Li J; Du G; Liu L Microb Cell Fact; 2019 Jan; 18(1):1. PubMed ID: 30609921 [TBL] [Abstract][Full Text] [Related]
6. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Liu Y; Zhu Y; Ma W; Shin HD; Li J; Liu L; Du G; Chen J Metab Eng; 2014 Jul; 24():61-9. PubMed ID: 24815549 [TBL] [Abstract][Full Text] [Related]
7. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine. Niu T; Liu Y; Li J; Koffas M; Du G; Alper HS; Liu L ACS Synth Biol; 2018 Oct; 7(10):2423-2435. PubMed ID: 30138558 [TBL] [Abstract][Full Text] [Related]
8. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Wu Y; Chen T; Liu Y; Lv X; Li J; Du G; Ledesma-Amaro R; Liu L Metab Eng; 2018 Sep; 49():232-241. PubMed ID: 30176395 [TBL] [Abstract][Full Text] [Related]
9. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis. Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807 [TBL] [Abstract][Full Text] [Related]
10. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Gu Y; Lv X; Liu Y; Li J; Du G; Chen J; Rodrigo LA; Liu L Metab Eng; 2019 Jan; 51():59-69. PubMed ID: 30343048 [TBL] [Abstract][Full Text] [Related]
11. Synergetic engineering of central carbon and nitrogen metabolism for the production of N-acetylglucosamine in Bacillus subtilis. Niu T; Lv X; Liu Z; Li J; Du G; Liu L Biotechnol Appl Biochem; 2020 Jan; 67(1):123-132. PubMed ID: 31654432 [TBL] [Abstract][Full Text] [Related]
12. Combinatorial Fine-Tuning of GNA1 and GlmS Expression by 5'-Terminus Fusion Engineering Leads to Overproduction of N-Acetylglucosamine in Bacillus subtilis. Ma W; Liu Y; Wang Y; Lv X; Li J; Du G; Liu L Biotechnol J; 2019 Mar; 14(3):e1800264. PubMed ID: 30105781 [TBL] [Abstract][Full Text] [Related]
13. Assembly of pathway enzymes by engineering functional membrane microdomain components for improved N-acetylglucosamine synthesis in Bacillus subtilis. Lv X; Zhang C; Cui S; Xu X; Wang L; Li J; Du G; Chen J; Ledesma-Amaro R; Liu L Metab Eng; 2020 Sep; 61():96-105. PubMed ID: 32502621 [TBL] [Abstract][Full Text] [Related]
14. Phosphosugar Stress in Bacillus subtilis: Intracellular Accumulation of Mannose 6-Phosphate Derepressed the Morabbi Heravi K; Manzoor I; Watzlawick H; de Jong A; Kuipers OP; Altenbuchner J J Bacteriol; 2019 May; 201(9):. PubMed ID: 30782637 [No Abstract] [Full Text] [Related]
15. Combinatorial promoter engineering of glucokinase and phosphoglucoisomerase for improved N-acetylglucosamine production in Bacillus subtilis. Ling M; Liu Y; Li J; Shin HD; Chen J; Du G; Liu L Bioresour Technol; 2017 Dec; 245(Pt A):1093-1102. PubMed ID: 28946392 [TBL] [Abstract][Full Text] [Related]
16. Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors. Deng C; Lv X; Li J; Zhang H; Liu Y; Du G; Amaro RL; Liu L Metab Eng; 2021 Sep; 67():330-346. PubMed ID: 34329707 [TBL] [Abstract][Full Text] [Related]
17. An optimal glucose feeding strategy integrated with step-wise regulation of the dissolved oxygen level improves N-acetylglucosamine production in recombinant Bacillus subtilis. Zhu Y; Liu Y; Li J; Shin HD; Du G; Liu L; Chen J Bioresour Technol; 2015 Feb; 177():387-92. PubMed ID: 25499147 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production. Ma W; Liu Y; Shin HD; Li J; Chen J; Du G; Liu L Bioresour Technol; 2018 Feb; 250():642-649. PubMed ID: 29220808 [TBL] [Abstract][Full Text] [Related]
19. Combinatorial pathway engineering of Bacillus subtilis for production of structurally defined and homogeneous chitooligosaccharides. Ling M; Wu Y; Tian R; Liu Y; Yu W; Tao G; Lv X; Li J; Du G; Amaro RL; Liu L Metab Eng; 2022 Mar; 70():55-66. PubMed ID: 35033656 [TBL] [Abstract][Full Text] [Related]
20. Engineering Corynebacterium glutamicum for the efficient production of N-acetylglucosamine. Li Z; Wang Q; Liu H; Wang Y; Zheng Z; Zhang Y; Tan T Bioresour Technol; 2023 Dec; 390():129865. PubMed ID: 37832852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]