These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32965679)

  • 21. Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis.
    Yuan P; Cui S; Liu Y; Li J; Lv X; Liu L; Du G
    Enzyme Microb Technol; 2020 Nov; 141():109652. PubMed ID: 33051011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis.
    Westbrook AW; Ren X; Oh J; Moo-Young M; Chou CP
    Metab Eng; 2018 May; 47():401-413. PubMed ID: 29698777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocatalytic Production of Glucosamine from
    Jiang Z; Lv X; Liu Y; Shin HD; Li J; Du G; Liu L
    J Microbiol Biotechnol; 2018 Nov; 28(11):1850-1858. PubMed ID: 30086621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis.
    Bertram R; Rigali S; Wood N; Lulko AT; Kuipers OP; Titgemeyer F
    J Bacteriol; 2011 Jul; 193(14):3525-36. PubMed ID: 21602348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthetic metabolic channel by functional membrane microdomains for compartmentalized flux control.
    Lv X; Wu Y; Tian R; Gu Y; Liu Y; Li J; Du G; Ledesma-Amaro R; Liu L
    Metab Eng; 2020 May; 59():106-118. PubMed ID: 32105784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate.
    Yang H; Liu Y; Li J; Liu L; Du G; Chen J
    Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergetic Fermentation of Glucose and Glycerol for High-Yield N-Acetylglucosamine Production in
    Wang K; Wang X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Bai Y; Huang H; Yao B; Su X; Zhang J
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A dynamic pathway analysis approach reveals a limiting futile cycle in N-acetylglucosamine overproducing Bacillus subtilis.
    Liu Y; Link H; Liu L; Du G; Chen J; Sauer U
    Nat Commun; 2016 Jun; 7():11933. PubMed ID: 27324299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis.
    Wu Y; Chen T; Liu Y; Tian R; Lv X; Li J; Du G; Chen J; Ledesma-Amaro R; Liu L
    Nucleic Acids Res; 2020 Jan; 48(2):996-1009. PubMed ID: 31799627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Optimization of heparosan synthetic pathway in Bacillus subtilis 168].
    Zhang L; Wang H; Zhou Z; Du G; Chen J; Kang Z
    Sheng Wu Gong Cheng Xue Bao; 2017 Jun; 33(6):936-945. PubMed ID: 28895355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis.
    Li S; Huang D; Li Y; Wen J; Jia X
    Microb Cell Fact; 2012 Aug; 11():101. PubMed ID: 22862776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamically Regulating Glucose Uptake to Reduce Overflow Metabolism with a Quorum-Sensing Circuit for the Efficient Synthesis of d-Pantothenic Acid in
    Yuan P; Xu M; Mao C; Zheng H; Sun D
    ACS Synth Biol; 2023 Oct; 12(10):2983-2995. PubMed ID: 37664894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uridine diphosphate N-acetylglucosamine orchestrates the interaction of GlmR with either YvcJ or GlmS in Bacillus subtilis.
    Foulquier E; Pompeo F; Byrne D; Fierobe HP; Galinier A
    Sci Rep; 2020 Sep; 10(1):15938. PubMed ID: 32994436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pathway Engineering of Bacillus subtilis for Enhanced N-Acetylneuraminic Acid Production via Whole-Cell Biocatalysis.
    Zhao L; Tian R; Shen Q; Liu Y; Liu L; Li J; Du G
    Biotechnol J; 2019 Jul; 14(7):e1800682. PubMed ID: 30925011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combinatorial Methylerythritol Phosphate Pathway Engineering and Process Optimization for Increased Menaquinone-7 Synthesis in
    Chen T; Xia H; Cui S; Lv X; Li X; Liu Y; Li J; Du G; Liu L
    J Microbiol Biotechnol; 2020 May; 30(5):762-769. PubMed ID: 32482943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway.
    Zhang M; Zhao X; Chen X; Li M; Wang X
    Biotechnol Lett; 2021 Dec; 43(12):2209-2216. PubMed ID: 34606014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosynthesis of low-molecular-weight mannan using metabolically engineered Bacillus subtilis 168.
    Jin P; Liang Z; Li H; Chen C; Xue Y; Du Q
    Carbohydr Polym; 2021 Jan; 251():117115. PubMed ID: 33142650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved production of N-acetylglucosamine in Saccharomyces cerevisiae by reducing glycolytic flux.
    Lee SW; Oh MK
    Biotechnol Bioeng; 2016 Nov; 113(11):2524-8. PubMed ID: 27217143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering of Bacillus subtilis for enhancing riboflavin production by alleviating dissolved oxygen limitation.
    You J; Yang C; Pan X; Hu M; Du Y; Osire T; Yang T; Rao Z
    Bioresour Technol; 2021 Aug; 333():125228. PubMed ID: 33957462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combinatorial metabolic engineering of Bacillus subtilis for menaquinone-7 biosynthesis.
    Sun X; Bi X; Li G; Cui S; Xu X; Liu Y; Li J; Du G; Lv X; Liu L
    Biotechnol Bioeng; 2024 Oct; 121(10):3338-3350. PubMed ID: 38965781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.