BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32966131)

  • 1. "CO"ping With a Sticky Situation.
    Jain K; Tyagi T; Hwa J
    Arterioscler Thromb Vasc Biol; 2020 Oct; 40(10):2344-2345. PubMed ID: 32966131
    [No Abstract]   [Full Text] [Related]  

  • 2. Antiplatelet Effect of Carbon Monoxide Is Mediated by NAD
    Kaczara P; Sitek B; Przyborowski K; Kurpinska A; Kus K; Stojak M; Chlopicki S
    Arterioscler Thromb Vasc Biol; 2020 Oct; 40(10):2376-2390. PubMed ID: 32787519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon monoxide shifts energetic metabolism from glycolysis to oxidative phosphorylation in endothelial cells.
    Kaczara P; Motterlini R; Kus K; Zakrzewska A; Abramov AY; Chlopicki S
    FEBS Lett; 2016 Oct; 590(20):3469-3480. PubMed ID: 27670394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antithrombotic properties of water-soluble carbon monoxide-releasing molecules.
    Kramkowski K; Leszczynska A; Mogielnicki A; Chlopicki S; Fedorowicz A; Grochal E; Mann B; Brzoska T; Urano T; Motterlini R; Buczko W
    Arterioscler Thromb Vasc Biol; 2012 Sep; 32(9):2149-57. PubMed ID: 22772756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the effects of the lipid-soluble CORM-2 and the water-soluble CORM-3 and CORM-A1 on platelet adhesion: The role of arachidonic acid metabolism.
    Adach W; Olas B
    Thromb Res; 2020 Apr; 188():61-64. PubMed ID: 32070829
    [No Abstract]   [Full Text] [Related]  

  • 6. Oxidative gastric mucosal damage induced by ischemia/reperfusion and the mechanisms of its prevention by carbon monoxide-releasing tricarbonyldichlororuthenium (II) dimer.
    Magierowska K; Korbut E; Hubalewska-Mazgaj M; Surmiak M; Chmura A; Bakalarz D; Buszewicz G; Wójcik D; Śliwowski Z; Ginter G; Gromowski T; Kwiecień S; Brzozowski T; Magierowski M
    Free Radic Biol Med; 2019 Dec; 145():198-208. PubMed ID: 31568823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interrelationship between gasotransmitters and lead-induced renal toxicity in rats.
    Abdel-Zaher AO; Abd-Ellatief RB; Aboulhagag NA; Farghaly HSM; Al-Wasei FMM
    Toxicol Lett; 2019 Aug; 310():39-50. PubMed ID: 30980911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress on anti-nociceptive effects of carbon monoxide releasing molecule-2 (CORM-2).
    Khir NAM; Noh ASM; Long I; Zakaria R; Ismail CAN
    Mol Cell Biochem; 2024 Mar; 479(3):539-552. PubMed ID: 37106243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of multifunctional donors of carbon monoxide: Their anticoagulant, antioxidant, anti-aggregatory and cytotoxicity activities in an in vitro model.
    Adach W; Olas B
    Nitric Oxide; 2020 Apr; 97():20-26. PubMed ID: 32006712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Suppressive effect of exogenous carbon monoxide on abnormal platelet exocytosis and its molecular mechanism in sepsis].
    Liu D; Xu X; Zhuang M; Song M; Qin W; Wang X; Sun B
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2016 Feb; 28(2):110-6. PubMed ID: 26911941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon monoxide released by CORM-3 inhibits human platelets by a mechanism independent of soluble guanylate cyclase.
    Chlopicki S; Olszanecki R; Marcinkiewicz E; Lomnicka M; Motterlini R
    Cardiovasc Res; 2006 Jul; 71(2):393-401. PubMed ID: 16713591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon monoxide-releasing molecule-3 (CORM-3; Ru(CO)3Cl(glycinate)) as a tool to study the concerted effects of carbon monoxide and nitric oxide on bacterial flavohemoglobin Hmp: applications and pitfalls.
    Tinajero-Trejo M; Denby KJ; Sedelnikova SE; Hassoubah SA; Mann BE; Poole RK
    J Biol Chem; 2014 Oct; 289(43):29471-82. PubMed ID: 25193663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of platelet aggregation by carbon monoxide-releasing molecules (CO-RMs): comparison with NO donors.
    Chlopicki S; Lomnicka M; Fedorowicz A; Grochal E; Kramkowski K; Mogielnicki A; Buczko W; Motterlini R
    Naunyn Schmiedebergs Arch Pharmacol; 2012 Jun; 385(6):641-50. PubMed ID: 22362133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon monoxide inhibits the nuclear-cytoplasmic translocation of HMGB1 in an in vitro oxidative stress injury model of mouse renal tubular epithelial cells.
    Jia Y; Wang L; Zhao GY; Wang ZQ; Chen S; Chen G
    J Huazhong Univ Sci Technolog Med Sci; 2016 Dec; 36(6):791-795. PubMed ID: 27924516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule.
    Motterlini R; Sawle P; Hammad J; Bains S; Alberto R; Foresti R; Green CJ
    FASEB J; 2005 Feb; 19(2):284-6. PubMed ID: 15556971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle.
    Taillé C; El-Benna J; Lanone S; Boczkowski J; Motterlini R
    J Biol Chem; 2005 Jul; 280(27):25350-60. PubMed ID: 15863496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis.
    Lancel S; Hassoun SM; Favory R; Decoster B; Motterlini R; Neviere R
    J Pharmacol Exp Ther; 2009 May; 329(2):641-8. PubMed ID: 19190234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon monoxide released by CORM-A1 prevents yeast cell death via autophagy stimulation.
    Figueiredo-Pereira C; Menezes R; Ferreira S; Santos CN; Vieira HLA
    FEMS Yeast Res; 2019 Aug; 19(5):. PubMed ID: 31344236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway.
    Li Y; Gao C; Shi Y; Tang Y; Liu L; Xiong T; Du M; Xing M; Liu L; Yao P
    Toxicol Appl Pharmacol; 2013 Nov; 273(1):53-8. PubMed ID: 23994557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon monoxide regulates glycolysis-dependent NLRP3 inflammasome activation in macrophages.
    Lee DW; Shin HY; Jeong JH; Han J; Ryu S; Nakahira K; Moon JS
    Biochem Biophys Res Commun; 2017 Nov; 493(2):957-963. PubMed ID: 28942141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.