BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32966218)

  • 1. Multiplex Cellular Communities in Multi-Gigapixel Colorectal Cancer Histology Images for Tissue Phenotyping.
    Javed S; Mahmood A; Werghi N; Benes K; Rajpoot N
    IEEE Trans Image Process; 2020 Sep; PP():. PubMed ID: 32966218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular community detection for tissue phenotyping in colorectal cancer histology images.
    Javed S; Mahmood A; Fraz MM; Koohbanani NA; Benes K; Tsang YW; Hewitt K; Epstein D; Snead D; Rajpoot N
    Med Image Anal; 2020 Jul; 63():101696. PubMed ID: 32330851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knowledge Distillation in Histology Landscape by Multi-Layer Features Supervision.
    Javed S; Mahmood A; Qaiser T; Werghi N
    IEEE J Biomed Health Inform; 2023 Jan; PP():. PubMed ID: 37021915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepBLS: Deep Feature-Based Broad Learning System for Tissue Phenotyping in Colorectal Cancer WSIs.
    Baidar Bakht A; Javed S; Gilani SQ; Karki H; Muneeb M; Werghi N
    J Digit Imaging; 2023 Aug; 36(4):1653-1662. PubMed ID: 37059892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially Constrained Context-Aware Hierarchical Deep Correlation Filters for Nucleus Detection in Histology Images.
    Javed S; Mahmood A; Dias J; Werghi N; Rajpoot N
    Med Image Anal; 2021 Aug; 72():102104. PubMed ID: 34242872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleus classification in histology images using message passing network.
    Hassan T; Javed S; Mahmood A; Qaiser T; Werghi N; Rajpoot N
    Med Image Anal; 2022 Jul; 79():102480. PubMed ID: 35598521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IHG-MA: Inductive heterogeneous graph multi-agent reinforcement learning for multi-intersection traffic signal control.
    Yang S; Yang B; Kang Z; Deng L
    Neural Netw; 2021 Jul; 139():265-277. PubMed ID: 33838602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features.
    Qaiser T; Tsang YW; Taniyama D; Sakamoto N; Nakane K; Epstein D; Rajpoot N
    Med Image Anal; 2019 Jul; 55():1-14. PubMed ID: 30991188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival Prediction via Hierarchical Multimodal Co-Attention Transformer: A Computational Histology-Radiology Solution.
    Li Z; Jiang Y; Lu M; Li R; Xia Y
    IEEE Trans Med Imaging; 2023 Sep; 42(9):2678-2689. PubMed ID: 37030860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SAFRON: Stitching Across the Frontier Network for Generating Colorectal Cancer Histology Images.
    Deshpande S; Minhas F; Graham S; Rajpoot N
    Med Image Anal; 2022 Apr; 77():102337. PubMed ID: 35016078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-cell type and multi-level graph aggregation network for cancer grading in pathology images.
    Abbas SF; Vuong TTL; Kim K; Song B; Kwak JT
    Med Image Anal; 2023 Dec; 90():102936. PubMed ID: 37660482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multimodal graph neural network framework for cancer molecular subtype classification.
    Li B; Nabavi S
    BMC Bioinformatics; 2024 Jan; 25(1):27. PubMed ID: 38225583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature-driven local cell graph (FLocK): New computational pathology-based descriptors for prognosis of lung cancer and HPV status of oropharyngeal cancers.
    Lu C; Koyuncu C; Corredor G; Prasanna P; Leo P; Wang X; Janowczyk A; Bera K; Lewis J; Velcheti V; Madabhushi A
    Med Image Anal; 2021 Feb; 68():101903. PubMed ID: 33352373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel deep learning-based algorithm combining histopathological features with tissue areas to predict colorectal cancer survival from whole-slide images.
    Li YJ; Chou HH; Lin PC; Shen MR; Hsieh SY
    J Transl Med; 2023 Oct; 21(1):731. PubMed ID: 37848862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embedding graphs on Grassmann manifold.
    Zhou B; Zheng X; Wang YG; Li M; Gao J
    Neural Netw; 2022 Aug; 152():322-331. PubMed ID: 35598401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-scale representation attention based deep multiple instance learning for gigapixel whole slide image analysis.
    Xiang H; Shen J; Yan Q; Xu M; Shi X; Zhu X
    Med Image Anal; 2023 Oct; 89():102890. PubMed ID: 37467642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HCGA: Highly comparative graph analysis for network phenotyping.
    Peach RL; Arnaudon A; Schmidt JA; Palasciano HA; Bernier NR; Jelfs KE; Yaliraki SN; Barahona M
    Patterns (N Y); 2021 Apr; 2(4):100227. PubMed ID: 33982022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical graph representations in digital pathology.
    Pati P; Jaume G; Foncubierta-Rodríguez A; Feroce F; Anniciello AM; Scognamiglio G; Brancati N; Fiche M; Dubruc E; Riccio D; Di Bonito M; De Pietro G; Botti G; Thiran JP; Frucci M; Goksel O; Gabrani M
    Med Image Anal; 2022 Jan; 75():102264. PubMed ID: 34781160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Structure-Aware Hierarchical Graph-Based Multiple Instance Learning Framework for pT Staging in Histopathological Image.
    Shi J; Tang L; Li Y; Zhang X; Gao Z; Zheng Y; Wang C; Gong T; Li C
    IEEE Trans Med Imaging; 2023 Oct; 42(10):3000-3011. PubMed ID: 37145949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Context-Aware Convolutional Neural Network for Grading of Colorectal Cancer Histology Images.
    Shaban M; Awan R; Fraz MM; Azam A; Tsang YW; Snead D; Rajpoot NM
    IEEE Trans Med Imaging; 2020 Jul; 39(7):2395-2405. PubMed ID: 32012004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.