These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 32966291)

  • 1. Neurodegeneration exposes firing rate dependent effects on oscillation dynamics in computational neural networks.
    Gabrieli D; Schumm SN; Vigilante NF; Parvesse B; Meaney DF
    PLoS One; 2020; 15(9):e0234749. PubMed ID: 32966291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using the virtual brain to reveal the role of oscillations and plasticity in shaping brain's dynamical landscape.
    Roy D; Sigala R; Breakspear M; McIntosh AR; Jirsa VK; Deco G; Ritter P
    Brain Connect; 2014 Dec; 4(10):791-811. PubMed ID: 25131838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity.
    Takahashi YK; Kori H; Masuda N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051904. PubMed ID: 19518477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma Oscillations Facilitate Effective Learning in Excitatory-Inhibitory Balanced Neural Circuits.
    Li KT; Liang J; Zhou C
    Neural Plast; 2021; 2021():6668175. PubMed ID: 33542728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):427-44. PubMed ID: 19937070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propagation delays determine neuronal activity and synaptic connectivity patterns emerging in plastic neuronal networks.
    Madadi Asl M; Valizadeh A; Tass PA
    Chaos; 2018 Oct; 28(10):106308. PubMed ID: 30384625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillations, phase-of-firing coding, and spike timing-dependent plasticity: an efficient learning scheme.
    Masquelier T; Hugues E; Deco G; Thorpe SJ
    J Neurosci; 2009 Oct; 29(43):13484-93. PubMed ID: 19864561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow-gamma frequencies are optimally guarded against effects of neurodegenerative diseases and traumatic brain injuries.
    Maia PD; Raj A; Kutz JN
    J Comput Neurosci; 2019 Aug; 47(1):1-16. PubMed ID: 31165337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges.
    Geisler C; Brunel N; Wang XJ
    J Neurophysiol; 2005 Dec; 94(6):4344-61. PubMed ID: 16093332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Firing-rate models for neurons with a broad repertoire of spiking behaviors.
    Heiberg T; Kriener B; Tetzlaff T; Einevoll GT; Plesser HE
    J Comput Neurosci; 2018 Oct; 45(2):103-132. PubMed ID: 30146661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous electrophysiological and morphological assessment of functional damage to neural networks in vitro after 30-300 g impacts.
    Rogers EA; Gross GW
    Sci Rep; 2019 Oct; 9(1):14994. PubMed ID: 31628381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of an Advanced Frequency-Based Hebbian Spike Timing Dependent Plasticity.
    Antonietti A; Orza V; Casellato C; D'Angelo E; Pedrocchi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3005-3009. PubMed ID: 31946521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.
    Ocker GK; Litwin-Kumar A; Doiron B
    PLoS Comput Biol; 2015 Aug; 11(8):e1004458. PubMed ID: 26291697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal learning in analog neural networks using spike-timing-dependent synaptic plasticity.
    Yoshioka M; Scarpetta S; Marinaro M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051917. PubMed ID: 17677108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of slow collective oscillations in neural networks with spike-timing dependent plasticity.
    Mikkelsen K; Imparato A; Torcini A
    Phys Rev Lett; 2013 May; 110(20):208101. PubMed ID: 25167453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike-timing dynamics of neuronal groups.
    Izhikevich EM; Gally JA; Edelman GM
    Cereb Cortex; 2004 Aug; 14(8):933-44. PubMed ID: 15142958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.