These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32966413)

  • 1. Nucleation and growth of water ice on oxide surfaces: the influence of a precursor to water dissociation.
    Souda R; Aizawa T; Sugiyama N; Takeguchi M
    Phys Chem Chem Phys; 2020 Sep; 22(36):20515-20523. PubMed ID: 32966413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reflection high energy electron diffraction (RHEED) study of ice nucleation and growth on Ni(111): influences of adspecies and electron irradiation.
    Souda R; Aizawa T
    Phys Chem Chem Phys; 2019 Sep; 21(35):19585-19593. PubMed ID: 31464304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization kinetics of thin water films on Pt(111): effects of oxygen and carbon-monoxide adspecies.
    Souda R; Aizawa T
    Phys Chem Chem Phys; 2019 Jan; 21(3):1123-1130. PubMed ID: 30607420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemisorbed and Physisorbed Water at the TiO
    Hosseinpour S; Tang F; Wang F; Livingstone RA; Schlegel SJ; Ohto T; Bonn M; Nagata Y; Backus EHG
    J Phys Chem Lett; 2017 May; 8(10):2195-2199. PubMed ID: 28447795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promoter effect of hydration on the nucleation of nanoparticles: direct observation for gold and copper on rutile TiO2 (110).
    Iachella M; Wilson A; Naitabdi A; Bernard R; Prévot G; Loffreda D
    Nanoscale; 2016 Sep; 8(36):16475-85. PubMed ID: 27603921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Cubic Ice via Clathrate Hydrate, Prepared in Ultrahigh Vacuum under Cryogenic Conditions.
    Ghosh J; Bhuin RG; Vishwakarma G; Pradeep T
    J Phys Chem Lett; 2020 Jan; 11(1):26-32. PubMed ID: 31804833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleation and growth of Pt nanoparticles on reduced and oxidized rutile TiO₂ (110).
    Rieboldt F; Vilhelmsen LB; Koust S; Lauritsen JV; Helveg S; Lammich L; Besenbacher F; Hammer B; Wendt S
    J Chem Phys; 2014 Dec; 141(21):214702. PubMed ID: 25481156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization kinetics of water on graphite.
    Souda R; Aizawa T
    Phys Chem Chem Phys; 2018 Aug; 20(34):21856-21863. PubMed ID: 30094449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oriented epitaxial TiO
    Hou W; Cortez P; Wuhrer R; Macartney S; Bozhilov KN; Liu R; Sheppard LR; Kisailus D
    Nanotechnology; 2017 Jun; 28(26):265602. PubMed ID: 28510531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, stability and water adsorption on ultra-thin TiO
    Gutiérrez Moreno JJ; Fronzi M; Lovera P; O'Riordan A; Ford MJ; Li W; Nolan M
    Phys Chem Chem Phys; 2019 Dec; 21(45):25344-25361. PubMed ID: 31701962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial Water Arrangement in the Ice-Bound State of an Antifreeze Protein: A Molecular Dynamics Simulation Study.
    Midya US; Bandyopadhyay S
    Langmuir; 2017 Jun; 33(22):5499-5510. PubMed ID: 28505449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of interfacial dipole on heterogeneous ice nucleation.
    Lu H; Xu Q; Wu J; Hong R; Zhang Z
    J Phys Condens Matter; 2021 Jul; 33(37):. PubMed ID: 34181589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of Ice Nucleation by Kaolinite (001) with Rigid and Flexible Surfaces.
    Zielke SA; Bertram AK; Patey GN
    J Phys Chem B; 2016 Mar; 120(8):1726-34. PubMed ID: 26524230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism.
    Lupi L; Peters B; Molinero V
    J Chem Phys; 2016 Dec; 145(21):211910. PubMed ID: 28799353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water on titanium dioxide surface: a revisiting by reactive molecular dynamics simulations.
    Huang L; Gubbins KE; Li L; Lu X
    Langmuir; 2014 Dec; 30(49):14832-40. PubMed ID: 25423593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Langmuir; 2015 Oct; 31(39):10799-806. PubMed ID: 26367109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The surface charge distribution affects the ice nucleating efficiency of silver iodide.
    Glatz B; Sarupria S
    J Chem Phys; 2016 Dec; 145(21):211924. PubMed ID: 28799343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous Ice Nucleation: Interplay of Surface Properties and Their Impact on Water Orientations.
    Glatz B; Sarupria S
    Langmuir; 2018 Jan; 34(3):1190-1198. PubMed ID: 29020452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of the wetting behaviors on a rutile TiO
    Fatemi SM; Fatemi SJ
    J Mol Graph Model; 2022 May; 112():108123. PubMed ID: 35074708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice formation on kaolinite: Insights from molecular dynamics simulations.
    Sosso GC; Tribello GA; Zen A; Pedevilla P; Michaelides A
    J Chem Phys; 2016 Dec; 145(21):211927. PubMed ID: 28799377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.