These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 32966422)
1. Highly efficient utilization of light and charge separation over a hematite photoanode achieved through a noncontact photonic crystal film for photoelectrochemical water splitting. Yu WY; Ma DK; Yang DP; Yang XG; Xu QL; Chen W; Huang S Phys Chem Chem Phys; 2020 Sep; 22(36):20202-20211. PubMed ID: 32966422 [TBL] [Abstract][Full Text] [Related]
2. Facile Fabrication of a Highly Crystalline and Well-Interconnected Hematite Nanoparticle Photoanode for Efficient Visible-Light-Driven Water Oxidation. Katsuki T; Zahran ZN; Tanaka K; Eo T; Mohamed EA; Tsubonouchi Y; Berber MR; Yagi M ACS Appl Mater Interfaces; 2021 Aug; 13(33):39282-39290. PubMed ID: 34387481 [TBL] [Abstract][Full Text] [Related]
3. Fe Ma J; Wang Q; Li L; Zong X; Sun H; Tao R; Fan X J Colloid Interface Sci; 2021 Nov; 602():32-42. PubMed ID: 34118603 [TBL] [Abstract][Full Text] [Related]
4. Sacrificial Interlayer for Promoting Charge Transport in Hematite Photoanode. Zhang K; Dong T; Xie G; Guan L; Guo B; Xiang Q; Dai Y; Tian L; Batool A; Jan SU; Boddula R; Thebo AA; Gong JR ACS Appl Mater Interfaces; 2017 Dec; 9(49):42723-42733. PubMed ID: 29193959 [TBL] [Abstract][Full Text] [Related]
5. Enabling high low-bias performance of Fe Xiao J; Li C; Jia X; Du B; Li R; Wang B J Colloid Interface Sci; 2023 Mar; 633():555-565. PubMed ID: 36470136 [TBL] [Abstract][Full Text] [Related]
6. CdS Nanoparticle-Modified α-Fe Yin R; Liu M; Tang R; Yin L Nanoscale Res Lett; 2017 Sep; 12(1):520. PubMed ID: 28866742 [TBL] [Abstract][Full Text] [Related]
7. Interface and surface engineering of hematite photoanode for efficient solar water oxidation. Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948 [TBL] [Abstract][Full Text] [Related]
8. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation. Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640 [TBL] [Abstract][Full Text] [Related]
9. Gradient doping of phosphorus in Fe Luo Z; Li C; Liu S; Wang T; Gong J Chem Sci; 2017 Jan; 8(1):91-100. PubMed ID: 28451152 [TBL] [Abstract][Full Text] [Related]
10. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles. Chen B; Fan W; Mao B; Shen H; Shi W Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164 [TBL] [Abstract][Full Text] [Related]
11. Unveiling the influence of 5,10,15,20-tetrakis (4-carboxyl phenyl) porphyrin on the photogenerated charge behavior and photoelectrochemical water oxidation of hematite photoanode. Bu Q; Liu X; Zhao Q; Lu G; Zhu X; Liu Q; Xie T J Colloid Interface Sci; 2022 Nov; 626():345-354. PubMed ID: 35792465 [TBL] [Abstract][Full Text] [Related]
12. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting. Mao L; Huang YC; Fu Y; Dong CL; Shen S Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607 [TBL] [Abstract][Full Text] [Related]
13. Controlled Band Offsets in Ultrathin Hematite for Enhancing the Photoelectrochemical Water Splitting Performance of Heterostructured Photoanodes. Choi MJ; Kim TL; Choi KS; Sohn W; Lee TH; Lee SA; Park H; Jeong SY; Yang JW; Lee S; Jang HW ACS Appl Mater Interfaces; 2022 Feb; 14(6):7788-7795. PubMed ID: 35040620 [TBL] [Abstract][Full Text] [Related]
14. Hematite decorated with nanodot-like cobalt (oxy)hydroxides for boosted photoelectrochemical water oxidation. Chong R; Wang Z; Fan M; Wang L; Chang Z; Zhang L J Colloid Interface Sci; 2023 Jan; 629(Pt B):217-226. PubMed ID: 36152578 [TBL] [Abstract][Full Text] [Related]
15. Three-Dimensional WO Wang Y; Tian W; Chen L; Cao F; Guo J; Li L ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799 [TBL] [Abstract][Full Text] [Related]
16. In situ growth of α-Fe Li C; Chen Z; Yuan W; Xu QH; Li CM Nanoscale; 2019 Jan; 11(3):1111-1122. PubMed ID: 30574647 [TBL] [Abstract][Full Text] [Related]
17. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System. Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672 [TBL] [Abstract][Full Text] [Related]
18. Rational Design of CoOOH/α-Fe Zheng Y; Wang P; Zhu S; Wu M; Zhang L; Feng C; Li D; Chang Z; Chong R Inorg Chem; 2024 Feb; 63(5):2745-2755. PubMed ID: 38241145 [TBL] [Abstract][Full Text] [Related]
19. Grey hematite photoanodes decrease the onset potential in photoelectrochemical water oxidation. Liu PF; Wang C; Wang Y; Li Y; Zhang B; Zheng LR; Jiang Z; Zhao H; Yang HG Sci Bull (Beijing); 2021 May; 66(10):1013-1021. PubMed ID: 36654246 [TBL] [Abstract][Full Text] [Related]
20. Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting. Ahn HJ; Goswami A; Riboni F; Kment S; Naldoni A; Mohajernia S; Zboril R; Schmuki P ChemSusChem; 2018 Jun; 11(11):1873-1879. PubMed ID: 29644796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]