These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 32966422)

  • 21. Serial hole transfer layers for a BiVO
    Li L; Li J; Bai J; Zeng Q; Xia L; Zhang Y; Chen S; Xu Q; Zhou B
    Nanoscale; 2018 Oct; 10(38):18378-18386. PubMed ID: 30256370
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual co-catalysts activated hematite nanorods with low turn-on potential and enhanced charge collection for efficient solar water oxidation.
    Maity D; Pal D; Karmakar K; Rakshit R; Khan GG; Mandal K
    Nanotechnology; 2022 Apr; 33(26):. PubMed ID: 35303734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulating the Silicon/Hematite Microwire Photoanode by the Conformal Al
    Zhou Z; Wu S; Li L; Li L; Li X
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5978-5988. PubMed ID: 30657304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures.
    Qiu Y; Leung SF; Zhang Q; Hua B; Lin Q; Wei Z; Tsui KH; Zhang Y; Yang S; Fan Z
    Nano Lett; 2014; 14(4):2123-9. PubMed ID: 24601797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:α-Fe
    Masoumi Z; Tayebi M; Kolaei M; Tayyebi A; Ryu H; Jang JI; Lee BK
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39215-39229. PubMed ID: 34374510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rational construction of S-doped FeOOH onto Fe
    Duc Quang N; Cao Van P; Majumder S; Jeong JR; Kim D; Kim C
    J Colloid Interface Sci; 2022 Jun; 616():749-758. PubMed ID: 35247813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Observation of charge transfer cascades in α-Fe
    Minguzzi A; Naldoni A; Lugaresi O; Achilli E; D'Acapito F; Malara F; Locatelli C; Vertova A; Rondinini S; Ghigna P
    Phys Chem Chem Phys; 2017 Feb; 19(8):5715-5720. PubMed ID: 28230223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving light absorption and photoelectrochemical performance of thin-film photoelectrode with a reflective substrate.
    Xiao J; Peng L; Gao L; Zhong J; Huang Z; Yuan E; Srinivasapriyan V; Zhou SF; Zhan G
    RSC Adv; 2021 Apr; 11(27):16600-16607. PubMed ID: 35479178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deposition of FeOOH Layer on Ultrathin Hematite Nanoflakes to Promote Photoelectrochemical Water Splitting.
    Zhang W; Zhang Y; Miao X; Zhao L; Zhu C
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boosting Hole Transfer in the Fluorine-Doped Hematite Photoanode by Depositing Ultrathin Amorphous FeOOH/CoOOH Cocatalysts.
    Wang T; Long X; Wei S; Wang P; Wang C; Jin J; Hu G
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49705-49712. PubMed ID: 33104336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hematite Hollow-Sphere-Array Photoanodes for Efficient Photoelectrochemical Water Splitting.
    Yang R; Xiao S; Zhang J; Tang S; Xu R; Tong Y
    Small; 2024 Jul; 20(28):e2310752. PubMed ID: 38345256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Situ Synthesis of α-Fe
    Lei B; Xu D; Wei B; Xie T; Xiao C; Jin W; Xu L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4785-4795. PubMed ID: 33430580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Facile Electrochemical Reduction Method for Improving Photocatalytic Performance of α-Fe
    Wang J; Waters JL; Kung P; Kim SM; Kelly JT; McNamara LE; Hammer NI; Pemberton BC; Schmehl RH; Gupta A; Pan S
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):381-390. PubMed ID: 27995797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.
    Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance.
    Li Y; Wei X; Zhu B; Wang H; Tang Y; Sum TC; Chen X
    Nanoscale; 2016 Jun; 8(21):11284-90. PubMed ID: 27189633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.
    Gurudayal ; Chee PM; Boix PP; Ge H; Yanan F; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6852-9. PubMed ID: 25790720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanostructure-assisted charge transfer in α-Fe
    Arzaee NA; Mohamad Noh MF; Mohd Ita NSH; Mohamed NA; Mohd Nasir SNF; Nawas Mumthas IN; Ismail AF; Mat Teridi MA
    Dalton Trans; 2020 Aug; 49(32):11317-11328. PubMed ID: 32760991
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface engineering of hematite nanorods photoanode towards optimized photoelectrochemical water splitting.
    Li Z; Wu J; Liao L; He X; Huang B; Zhang S; Wei Y; Wang S; Zhou W
    J Colloid Interface Sci; 2022 Nov; 626():879-888. PubMed ID: 35835039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Foreign In
    Bu X; Wang G; Tian Y
    Nanoscale; 2017 Nov; 9(44):17513-17523. PubMed ID: 29109997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.